33 Varieties
-
Section 33.1: Introduction
-
Section 33.2: Notation
-
Section 33.3: Varieties
-
Section 33.4: Varieties and rational maps
-
Section 33.5: Change of fields and local rings
-
Section 33.6: Geometrically reduced schemes
-
Section 33.7: Geometrically connected schemes
-
Section 33.8: Geometrically irreducible schemes
-
Section 33.9: Geometrically integral schemes
-
Section 33.10: Geometrically normal schemes
-
Section 33.11: Change of fields and locally Noetherian schemes
-
Section 33.12: Geometrically regular schemes
-
Section 33.13: Change of fields and the Cohen-Macaulay property
-
Section 33.14: Change of fields and the Jacobson property
-
Section 33.15: Change of fields and ample invertible sheaves
-
Section 33.16: Tangent spaces
-
Section 33.17: Generically finite morphisms
-
Section 33.18: Variants of Noether normalization
-
Section 33.19: Dimension of fibres
-
Section 33.20: Algebraic schemes
-
Section 33.21: Complete local rings
-
Section 33.22: Global generation
-
Section 33.23: Separating points and tangent vectors
-
Section 33.24: Closures of products
-
Section 33.25: Schemes smooth over fields
-
Section 33.26: Types of varieties
-
Section 33.27: Normalization
-
Section 33.28: Groups of invertible functions
-
Section 33.29: Künneth formula, I
-
Section 33.30: Picard groups of varieties
-
Section 33.31: Uniqueness of base field
-
Section 33.32: Automorphisms
-
Section 33.33: Euler characteristics
-
Section 33.34: Projective space
-
Section 33.35: Coherent sheaves on projective space
-
Section 33.36: Frobenii
-
Section 33.37: Glueing dimension one rings
-
Section 33.38: One dimensional Noetherian schemes
-
Section 33.39: The delta invariant
-
Section 33.40: The number of branches
-
Section 33.41: Normalization of one dimensional schemes
-
Section 33.42: Finding affine opens
-
Section 33.43: Curves
-
Section 33.44: Degrees on curves
-
Section 33.45: Numerical intersections
-
Section 33.46: Embedding dimension
-
Section 33.47: Bertini theorems
-
Section 33.48: Enriques-Severi-Zariski