Lemma 33.36.7. Let $p > 0$ be a prime number. Let $S$ be a scheme in characteristic $p$. Let $X$ be a scheme over $S$. Then $\Omega _{X/S} = \Omega _{X/X^{(p)}}$.
Proof. This translates into the following algebra fact. Let $A \to B$ be a homomorphism of rings of characteristic $p$. Set $B' = B \otimes _{A, F_ A} A$ and consider the ring map $F_{B/A} : B' \to B$, $b \otimes a \mapsto b^ pa$. Then our assertion is that $\Omega _{B/A} = \Omega _{B/B'}$. This is true because $\text{d}(b^ pa) = 0$ if $\text{d} : B \to \Omega _{B/A}$ is the universal derivation and hence $\text{d}$ is a $B'$-derivation. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: