The Stacks project

Lemma 33.14.2. Let $X$ be a scheme over a field $k$. For any field extension $K/k$ whose cardinality is large enough we have

  1. for any closed point $x \in X_ K$ the extension $\kappa (x)/K$ is algebraic, and

  2. $X_ K$ is a Jacobson scheme (Properties, Definition 28.6.1).

Proof. Choose an affine open covering $X = \bigcup U_ i$. By Algebra, Lemma 10.35.12 and Properties, Lemma 28.6.2 there exist cardinals $\kappa _ i$ such that $U_{i, K}$ has the desired properties over $K$ if $\# (K) \geq \kappa _ i$. Set $\kappa = \max \{ \kappa _ i\} $. Then if the cardinality of $K$ is larger than $\kappa $ we see that each $U_{i, K}$ satisfies the conclusions of the lemma. Hence $X_ K$ is Jacobson by Properties, Lemma 28.6.3. The statement on residue fields at closed points of $X_ K$ follows from the corresponding statements for residue fields of closed points of the $U_{i, K}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0479. Beware of the difference between the letter 'O' and the digit '0'.