Example 33.7.2. Let $k = \mathbf{Q}$. The scheme $X = \mathop{\mathrm{Spec}}(\mathbf{Q}(i))$ is a variety over $\mathop{\mathrm{Spec}}(\mathbf{Q})$. But the base change $X_{\mathbf{C}}$ is the spectrum of $\mathbf{C} \otimes _{\mathbf{Q}} \mathbf{Q}(i) \cong \mathbf{C} \times \mathbf{C}$ which is the disjoint union of two copies of $\mathop{\mathrm{Spec}}(\mathbf{C})$. So in fact, this is an example of a non-geometrically connected variety.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)