Lemma 33.5.3. Notation as in Lemma 33.5.1. Assume $X$ is locally of finite type over $k$, that $\dim (\mathcal{O}_{X, x}) = \dim (\mathcal{O}_{Y, y})$ and that $\kappa (x) \otimes _ k K$ is reduced (for example if $\kappa (x)/k$ is separable or $K/k$ is separable). Then $\mathfrak m_ x \mathcal{O}_{Y, y} = \mathfrak m_ y$.
Proof. (The parenthetical statement follows from Algebra, Lemma 10.43.6.) Combining Lemmas 33.5.1 and 33.5.2 we see that $\mathcal{O}_{Y, y}/\mathfrak m_ x \mathcal{O}_{Y, y}$ has dimension $0$ and is reduced. Hence it is a field. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: