Lemma 33.19.2. Let $f : X \to \mathop{\mathrm{Spec}}(R)$ be a morphism from an irreducible scheme to the spectrum of a valuation ring. If $f$ is locally of finite type and surjective, then the special fibre is equidimensional of dimension equal to the dimension of the generic fibre.
Proof. We may replace $X$ by its reduction because this does not change the dimension of $X$ or of the special fibre. Then $X$ is integral and the lemma follows from Algebra, Lemma 10.125.9. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)