The Stacks project

Lemma 33.38.6. Let $X$ be a Noetherian integral separated scheme of dimension $1$. Then $X$ has an ample invertible sheaf.

Proof. Choose an affine open covering $X = U_1 \cup \ldots \cup U_ n$. Since $X$ is Noetherian, each of the sets $X \setminus U_ i$ is finite. Thus by Lemma 33.38.4 we can find a pair $(\mathcal{L}_ i, s_ i)$ consisting of a globally generated invertible sheaf $\mathcal{L}_ i$ and a global section $s_ i$ such that $U_ i = X_{s_ i}$. We conclude that $X$ has an ample invertible sheaf by Lemma 33.38.5. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 33.38: One dimensional Noetherian schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09ND. Beware of the difference between the letter 'O' and the digit '0'.