Lemma 33.38.6. Let $X$ be a Noetherian integral separated scheme of dimension $1$. Then $X$ has an ample invertible sheaf.
Proof. Choose an affine open covering $X = U_1 \cup \ldots \cup U_ n$. Since $X$ is Noetherian, each of the sets $X \setminus U_ i$ is finite. Thus by Lemma 33.38.4 we can find a pair $(\mathcal{L}_ i, s_ i)$ consisting of a globally generated invertible sheaf $\mathcal{L}_ i$ and a global section $s_ i$ such that $U_ i = X_{s_ i}$. We conclude that $X$ has an ample invertible sheaf by Lemma 33.38.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: