Lemma 33.5.1. Let $K/k$ be an extension of fields. Let $X$ be scheme over $k$ and set $Y = X_ K$. If $y \in Y$ with image $x \in X$, then
$\mathcal{O}_{X, x} \to \mathcal{O}_{Y, y}$ is a faithfully flat local ring homomorphism,
with $\mathfrak p_0 = \mathop{\mathrm{Ker}}(\kappa (x) \otimes _ k K \to \kappa (y))$ we have $\kappa (y) = \kappa (\mathfrak p_0)$,
$\mathcal{O}_{Y, y} = (\mathcal{O}_{X, x} \otimes _ k K)_\mathfrak p$ where $\mathfrak p \subset \mathcal{O}_{X, x} \otimes _ k K$ is the inverse image of $\mathfrak p_0$.
we have $\mathcal{O}_{Y, y}/\mathfrak m_ x\mathcal{O}_{Y, y} = (\kappa (x) \otimes _ k K)_{\mathfrak p_0}$
Comments (0)
There are also: