Lemma 33.43.5. Let $X$ be a separated scheme of finite type over $k$. If $\dim (X) \leq 1$, then there exists an open immersion $j : X \to \overline{X}$ with the following properties
$\overline{X}$ is H-projective over $k$, i.e., $\overline{X}$ is a closed subscheme of $\mathbf{P}^ d_ k$ for some $d$,
$j(X) \subset \overline{X}$ is dense and scheme theoretically dense,
$\overline{X} \setminus X = \{ x_1, \ldots , x_ n\} $ for some closed points $x_ i \in \overline{X}$.
Comments (0)
There are also: