38 More on Flatness
-
Section 38.1: Introduction
-
Section 38.2: Lemmas on étale localization
-
Section 38.3: The local structure of a finite type module
-
Section 38.4: One step dévissage
-
Section 38.5: Complete dévissage
-
Section 38.6: Translation into algebra
-
Section 38.7: Localization and universally injective maps
-
Section 38.8: Completion and Mittag-Leffler modules
-
Section 38.9: Projective modules
-
Section 38.10: Flat finite type modules, Part I
-
Section 38.11: Extending properties from an open
-
Section 38.12: Flat finitely presented modules
-
Section 38.13: Flat finite type modules, Part II
-
Section 38.14: Examples of relatively pure modules
-
Section 38.15: Impurities
-
Section 38.16: Relatively pure modules
-
Section 38.17: Examples of relatively pure sheaves
-
Section 38.18: A criterion for purity
-
Section 38.19: How purity is used
-
Section 38.20: Flattening functors
-
Section 38.21: Flattening stratifications
-
Section 38.22: Flattening stratification over an Artinian ring
-
Section 38.23: Flattening a map
-
Section 38.24: Flattening in the local case
-
Section 38.25: Variants of a lemma
-
Section 38.26: Flat finite type modules, Part III
-
Section 38.27: Universal flattening
-
Section 38.28: Grothendieck's Existence Theorem, IV
-
Section 38.29: Grothendieck's Existence Theorem, V
-
Section 38.30: Blowing up and flatness
-
Section 38.31: Applications
-
Section 38.32: Compactifications
-
Section 38.33: Nagata compactification
-
Section 38.34: The h topology
-
Section 38.35: More on the h topology
-
Section 38.36: Blow up squares and the ph topology
-
Section 38.37: Almost blow up squares and the h topology
-
Section 38.38: Absolute weak normalization and h coverings
-
Section 38.39: Descent vector bundles in positive characteristic
-
Section 38.40: Blowing up complexes
-
Section 38.41: Blowing up perfect modules
-
Section 38.42: An operator introduced by Berthelot and Ogus
-
Section 38.43: Blowing up complexes, II
-
Section 38.44: Blowing up complexes, III