Lemma 38.15.3. In Situation 38.15.1. If there exists an impurity of $\mathcal{F}$ above $s$, then there exists an impurity $(g : T \to S, t' \leadsto t, \xi )$ of $\mathcal{F}$ above $s$ such that $g$ is locally of finite presentation and $t$ a closed point of the fibre of $g$ above $s$.
Proof. Let $(g : T \to S, t' \leadsto t, \xi )$ be any impurity of $\mathcal{F}$ above $s$. We apply Limits, Lemma 32.14.1 to $t \in T$ and $Z = \overline{\{ \xi \} }$ to obtain an open neighbourhood $V \subset T$ of $t$, a commutative diagram
and a closed subscheme $Z' \subset X_{T'}$ such that
the morphism $b : T' \to S$ is locally of finite presentation,
we have $Z' \cap X_{a(t)} = \emptyset $, and
$Z \cap X_ V$ maps into $Z'$ via the morphism $X_ V \to X_{T'}$.
As $t'$ specializes to $t$ we may replace $T$ by the open neighbourhood $V$ of $t$. Thus we have a commutative diagram
where $b \circ a = g$. Let $\xi ' \in X_{T'}$ denote the image of $\xi $. By Divisors, Lemma 31.7.3 we see that $\xi ' \in \text{Ass}_{X_{T'}/T'}(\mathcal{F}_{T'})$. Moreover, by construction the closure of $\overline{\{ \xi '\} }$ is contained in the closed subset $Z'$ which avoids the fibre $X_{a(t)}$. In this way we see that $(T' \to S, a(t') \leadsto a(t), \xi ')$ is an impurity of $\mathcal{F}$ above $s$.
Thus we may assume that $g : T \to S$ is locally of finite presentation. Let $Z = \overline{\{ \xi \} }$. By assumption $Z_ t = \emptyset $. By More on Morphisms, Lemma 37.24.1 this means that $Z_{t''} = \emptyset $ for $t''$ in an open subset of $\overline{\{ t\} }$. Since the fibre of $T \to S$ over $s$ is a Jacobson scheme, see Morphisms, Lemma 29.16.10 we find that there exist a closed point $t'' \in \overline{\{ t\} }$ such that $Z_{t''} = \emptyset $. Then $(g : T \to S, t' \leadsto t'', \xi )$ is the desired impurity. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)