Lemma 38.43.9. In Situation 38.43.1 let $W \subset X$ be the maximal open subscheme over which the cohomology sheaves of $M$ are locally free. Then the morphism $b : X' \to X$ of Lemma 38.43.6 is an isomorphism over $W$.
Proof. This is true because for any affine chart $(U, A, f, M^\bullet )$ with $U \subset W$ we have that $I_ i(M^\bullet , f)$ are locally generated by a power of $f$ by More on Algebra, Lemma 15.96.4. Since $f$ is a nonzerodivisor, the blowing up $b^{-1}(U) \to U$ is an isomorphism. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)