Lemma 38.41.1. Let $X$ be a scheme. Let $\mathcal{F}$ be a perfect $\mathcal{O}_ X$-module of tor dimension $\leq 1$. For any blowup $b : X' \to X$ we have $Lb^*\mathcal{F} = b^*\mathcal{F}$ and $b^*\mathcal{F}$ is a perfect $\mathcal{O}_ X$-module of tor dimension $\leq 1$.
Proof. We may assume $X = \mathop{\mathrm{Spec}}(A)$ is affine and we may assume the $A$-module $M$ corresponding to $\mathcal{F}$ has a presentation
Suppose $I \subset A$ is an ideal and $a \in I$. Recall that the affine blowup algebra $A[\frac{I}{a}]$ is a subring of $A_ a$. Since localization is exact we see that $A_ a^{\oplus m} \to A_ a^{\oplus n}$ is injective. Hence $A[\frac{I}{a}]^{\oplus m} \to A[\frac{I}{a}]^{\oplus n}$ is injective too. This proves the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)