Lemma 38.7.4. Let $R \to S$ be a ring map. Let $N$ be an $S$-module. Let $S \to S'$ be a ring map. Assume
$R \to S$ is of finite presentation and $N$ is of finite presentation over $S$,
$N$ is flat over $R$,
$S \to S'$ is flat, and
the image of $\mathop{\mathrm{Spec}}(S') \to \mathop{\mathrm{Spec}}(S)$ contains all primes $\mathfrak q$ such that $\mathfrak q$ is an associated prime of $N \otimes _ R \kappa (\mathfrak p)$ where $\mathfrak p$ is the inverse image of $\mathfrak q$ in $R$.
Then $N \to N \otimes _ S S'$ is $R$-universally injective.
Comments (0)