Lemma 38.4.5. Let $S$, $X$, $\mathcal{F}$, $x$, $s$ be as in Definition 38.4.2. Let $(Z, Y, i, \pi , \mathcal{G}, z, y)$ be a one step dévissage of $\mathcal{F}/X/S$ at $x$. Let $(S', s') \to (S, s)$ be a morphism of pointed schemes which induces an isomorphism $\kappa (s) = \kappa (s')$. Let $(Z', Y', i', \pi ', \mathcal{G}')$ be as constructed in Lemma 38.4.4 and let $x' \in X'$ (resp. $z' \in Z'$, $y' \in Y'$) be the unique point mapping to both $x \in X$ (resp. $z \in Z$, $y \in Y$) and $s' \in S'$. If $S'$ is affine, then $(Z', Y', i', \pi ', \mathcal{G}', z', y')$ is a one step dévissage of $\mathcal{F}'/X'/S'$ at $x'$.
Proof. By Lemma 38.4.4 $(Z', Y', i', \pi ', \mathcal{G}')$ is a one step dévissage of $\mathcal{F}'/X'/S'$ over $s'$. Properties (1) – (4) of Definition 38.4.2 hold for $(Z', Y', i', \pi ', \mathcal{G}', z', y')$ as the assumption that $\kappa (s) = \kappa (s')$ insures that the fibres $X'_{s'}$, $Z'_{s'}$, and $Y'_{s'}$ are isomorphic to $X_ s$, $Z_ s$, and $Y_ s$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)