Lemma 38.43.12. In Situation 38.43.1. Let $b : X' \to X$, $D' \subset X'$, and $Q$ be as in Lemma 38.43.7. Let $\rho = (\rho _ i)_{i \in \mathbf{Z}}$ be integers. Let $W(\rho ) \subset X$ be the maximal open subscheme where $H^ i(M)$ is locally free of rank $\rho _ i$ for all $i$. Let $i : T \to D'$ be as in Lemma 38.43.11. Then there exists an open and closed subscheme $T(\rho ) \subset T$ containing $D' \cap b^{-1}(W(\rho ))$ scheme theoretically such that $H^ i(Li^*Q|_{T(\rho )})$ is locally free of rank $\rho _ i$ for all $i$.
Proof. Let $T(\rho ) \subset T$ be the open and closed subscheme where $H^ i(Li^*Q)$ has rank $\rho _ i$ for all $i$. Then the statement is immediate from the assertion in Lemma 38.43.11 on ranks of the cohomology modules. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)