Definition 38.4.1. Let $S$ be a scheme. Let $X$ be locally of finite type over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $s \in S$ be a point. A one step dévissage of $\mathcal{F}/X/S$ over $s$ is given by morphisms of schemes over $S$
and a quasi-coherent $\mathcal{O}_ Z$-module $\mathcal{G}$ of finite type such that
$X$, $S$, $Z$ and $Y$ are affine,
$i$ is a closed immersion of finite presentation,
$\mathcal{F} \cong i_*\mathcal{G}$,
$\pi $ is finite, and
the structure morphism $Y \to S$ is smooth with geometrically irreducible fibres of dimension $\dim (\text{Supp}(\mathcal{F}_ s))$.
In this case we say $(Z, Y, i, \pi , \mathcal{G})$ is a one step dévissage of $\mathcal{F}/X/S$ over $s$.
Comments (0)