The Stacks project

96.12 Locally quasi-coherent modules

Although there is a variant for the Zariski topology, it seems that the étale topology is the natural topology to use in the following definition.

Definition 96.12.1. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}_\mathcal {X}$-modules. We say $\mathcal{F}$ is locally quasi-coherent1 if $\mathcal{F}$ is a sheaf for the étale topology and for every object $x$ of $\mathcal{X}$ the restriction $x^*\mathcal{F}|_{U_{\acute{e}tale}}$ is a quasi-coherent sheaf. Here $U = p(x)$.

We use $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ to indicate the category of locally quasi-coherent modules. We now have the following diagram of categories of modules

\[ \xymatrix{ \mathit{QCoh}(\mathcal{O}_\mathcal {X}) \ar[r] \ar[d] & \textit{Mod}(\mathcal{O}_\mathcal {X}) \ar[d] \\ \textit{LQCoh}(\mathcal{O}_\mathcal {X}) \ar[r] & \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X}) } \]

where the arrows are strictly full embeddings. It turns out that many results for quasi-coherent sheaves have a counter part for locally quasi-coherent modules. Moreover, from many points of view (as we shall see later) this is a natural category to consider. For example the quasi-coherent sheaves are exactly those locally quasi-coherent modules that are “cartesian”, i.e., satisfy the second condition of the lemma below.

Lemma 96.12.2. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}_\mathcal {X}$-modules. Then $\mathcal{F}$ is quasi-coherent if and only if the following two conditions hold

  1. $\mathcal{F}$ is locally quasi-coherent, and

  2. for any morphism $\varphi : x \to y$ of $\mathcal{X}$ lying over $f : U \to V$ the comparison map $c_\varphi : f_{small}^*\mathcal{F}|_{V_{\acute{e}tale}} \to \mathcal{F}|_{U_{\acute{e}tale}}$ of (96.9.4.1) is an isomorphism.

Proof. Assume $\mathcal{F}$ is quasi-coherent. Then $\mathcal{F}$ is a sheaf for the fppf topology, hence a sheaf for the étale topology. Moreover, any pullback of $\mathcal{F}$ to a ringed topos is quasi-coherent, hence the restrictions $x^*\mathcal{F}|_{U_{\acute{e}tale}}$ are quasi-coherent. This proves $\mathcal{F}$ is locally quasi-coherent. Let $y$ be an object of $\mathcal{X}$ with $V = p(y)$. We have seen that $\mathcal{X}/y = (\mathit{Sch}/V)_{fppf}$. By Descent, Proposition 35.8.9 it follows that $y^*\mathcal{F}$ is the quasi-coherent module associated to a (usual) quasi-coherent module $\mathcal{F}_ V$ on the scheme $V$. Hence certainly the comparison maps (96.9.4.1) are isomorphisms.

Conversely, suppose that $\mathcal{F}$ satisfies (1) and (2). Let $y$ be an object of $\mathcal{X}$ with $V = p(y)$. Denote $\mathcal{F}_ V$ the quasi-coherent module on the scheme $V$ corresponding to the restriction $y^*\mathcal{F}|_{V_{\acute{e}tale}}$ which is quasi-coherent by assumption (1), see Descent, Proposition 35.8.9. Condition (2) now signifies that the restrictions $x^*\mathcal{F}|_{U_{\acute{e}tale}}$ for $x$ over $y$ are each isomorphic to the (étale sheaf associated to the) pullback of $\mathcal{F}_ V$ via the corresponding morphism of schemes $U \to V$. Hence $y^*\mathcal{F}$ is the sheaf on $(\mathit{Sch}/V)_{fppf}$ associated to $\mathcal{F}_ V$. Hence it is quasi-coherent (by Descent, Proposition 35.8.9 again) and we see that $\mathcal{F}$ is quasi-coherent on $\mathcal{X}$ by Lemma 96.11.3. $\square$

Lemma 96.12.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. The pullback functor $f^* = f^{-1} : \textit{Mod}(\mathcal{Y}_{\acute{e}tale}, \mathcal{O}_\mathcal {Y}) \to \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ preserves locally quasi-coherent sheaves.

Proof. Let $\mathcal{G}$ be locally quasi-coherent on $\mathcal{Y}$. Choose an object $x$ of $\mathcal{X}$ lying over the scheme $U$. The restriction $x^*f^*\mathcal{G}|_{U_{\acute{e}tale}}$ equals $(f \circ x)^*\mathcal{G}|_{U_{\acute{e}tale}}$ hence is a quasi-coherent sheaf by assumption on $\mathcal{G}$. $\square$

Lemma 96.12.4. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids.

  1. The category $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ has colimits and they agree with colimits in the category $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$.

  2. The category $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ is abelian with kernels and cokernels computed in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, in other words the inclusion functor is exact.

  3. Given a short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ if two out of three are locally quasi-coherent so is the third.

  4. Given $\mathcal{F}, \mathcal{G}$ in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ the tensor product $\mathcal{F} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{G}$ in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ is an object of $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$.

  5. Given $\mathcal{F}, \mathcal{G}$ in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ with $\mathcal{F}$ of finite presentation on $\mathcal{X}_{\acute{e}tale}$ the sheaf $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ is an object of $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$.

Proof. In the arguments below $x$ denotes an arbitrary object of $\mathcal{X}$ lying over the scheme $U$. To show that an object $\mathcal{H}$ of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ is in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ we will show that the restriction $x^*\mathcal{H}|_{U_{\acute{e}tale}} = \mathcal{H}|_{U_{\acute{e}tale}}$ is a quasi-coherent object of $\textit{Mod}(U_{\acute{e}tale}, \mathcal{O}_ U)$.

Proof of (1). Let $\mathcal{I} \to \textit{LQCoh}(\mathcal{O}_\mathcal {X})$, $i \mapsto \mathcal{F}_ i$ be a diagram. Consider the object $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. The pullback functor $x^*$ commutes with all colimits as it is a left adjoint. Hence $x^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i x^*\mathcal{F}_ i$. Similarly we have $x^*\mathcal{F}|_{U_{\acute{e}tale}} = \mathop{\mathrm{colim}}\nolimits _ i x^*\mathcal{F}_ i|_{U_{\acute{e}tale}}$. Now by assumption each $x^*\mathcal{F}_ i|_{U_{\acute{e}tale}}$ is quasi-coherent. Hence $\mathop{\mathrm{colim}}\nolimits _ i x^*\mathcal{F}_ i|_{U_{\acute{e}tale}}$ is quasi-coherent by Descent, Lemma 35.10.3. Thus $x^*\mathcal{F}|_{U_{\acute{e}tale}}$ is quasi-coherent as desired.

Proof of (2). It follows from (1) that cokernels exist in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ and agree with the cokernels computed in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ and let $\mathcal{K} = \mathop{\mathrm{Ker}}(\varphi )$ computed in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. If we can show that $\mathcal{K}$ is a locally quasi-coherent module, then the proof of (2) is complete. To see this, note that kernels are computed in the category of presheaves (no sheafification necessary). Hence $\mathcal{K}|_{U_{\acute{e}tale}}$ is the kernel of the map $\mathcal{F}|_{U_{\acute{e}tale}} \to \mathcal{G}|_{U_{\acute{e}tale}}$, i.e., is the kernel of a map of quasi-coherent sheaves on $U_{\acute{e}tale}$ whence quasi-coherent by Descent, Lemma 35.10.3. This proves (2).

Proof of (3). Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be a short exact sequence of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. Since we are using the étale topology, the restriction $0 \to \mathcal{F}_1|_{U_{\acute{e}tale}} \to \mathcal{F}_2|_{U_{\acute{e}tale}} \to \mathcal{F}_3|_{U_{\acute{e}tale}} \to 0$ is a short exact sequence too. Hence (3) follows from the corresponding statement in Descent, Lemma 35.10.3.

Proof of (4). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$. Since restriction to $U_{\acute{e}tale}$ is given by pullback along the morphism of ringed topoi $U_{\acute{e}tale}\to (\mathit{Sch}/U)_{\acute{e}tale}\to \mathcal{X}_{\acute{e}tale}$ we see that the restriction of the tensor product $\mathcal{F} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{G}$ to $U_{\acute{e}tale}$ is equal to $\mathcal{F}|_{U_{\acute{e}tale}} \otimes _{\mathcal{O}_ U} \mathcal{G}|_{U_{\acute{e}tale}}$, see Modules on Sites, Lemma 18.26.2. Since $\mathcal{F}|_{U_{\acute{e}tale}}$ and $\mathcal{G}|_{U_{\acute{e}tale}}$ are quasi-coherent, so is their tensor product, see Descent, Lemma 35.10.3.

Proof of (5). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ with $\mathcal{F}$ of finite presentation. Since $(\mathit{Sch}/U)_{\acute{e}tale}= \mathcal{X}_{\acute{e}tale}/x$ is a localization of $\mathcal{X}_{\acute{e}tale}$ at an object we see that the restriction of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ to $(\mathit{Sch}/U)_{\acute{e}tale}$ is equal to

\[ \mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}|_{(\mathit{Sch}/U)_{\acute{e}tale}}}( \mathcal{F}|_{(\mathit{Sch}/U)_{\acute{e}tale}}, \mathcal{G}|_{(\mathit{Sch}/U)_{\acute{e}tale}}) \]

by Modules on Sites, Lemma 18.27.2. The morphism of ringed topoi $(U_{\acute{e}tale}, \mathcal{O}_ U) \to ((\mathit{Sch}/U)_{\acute{e}tale}, \mathcal{O})$ is flat as the pullback of $\mathcal{O}$ is $\mathcal{O}_ U$. Hence the pullback of $\mathcal{H}$ by this morphism is equal to $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_{U_{\acute{e}tale}}, \mathcal{G}|_{U_{\acute{e}tale}})$ by Modules on Sites, Lemma 18.31.4. In other words, the restriction of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ to $U_{\acute{e}tale}$ is $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_{U_{\acute{e}tale}}, \mathcal{G}|_{U_{\acute{e}tale}})$. Since $\mathcal{F}|_{U_{\acute{e}tale}}$ and $\mathcal{G}|_{U_{\acute{e}tale}}$ are quasi-coherent, so is $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_{U_{\acute{e}tale}}, \mathcal{G}|_{U_{\acute{e}tale}})$, see Descent, Lemma 35.10.3. We conclude as before. $\square$

In the generality discussed here the category of quasi-coherent sheaves is not abelian. See Examples, Section 110.13. Here is what we can prove without any further work.

Lemma 96.12.5. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids.

  1. The category $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ has colimits and they agree with colimits in the categories $\textit{Mod}(\mathcal{X}_{Zar}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{O}_\mathcal {X})$, and $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$.

  2. Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ the tensor products $\mathcal{F} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{G}$ computed in $\textit{Mod}(\mathcal{X}_{Zar}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, or $\textit{Mod}(\mathcal{O}_\mathcal {X})$ agree and the common value is an object of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$.

  3. Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ with $\mathcal{F}$ finite locally free (in fppf, or equivalently étale, or equivalently Zariski topology) the internal homs $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ computed in $\textit{Mod}(\mathcal{X}_{Zar}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, or $\textit{Mod}(\mathcal{O}_\mathcal {X})$ agree and the common value is an object of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$.

Proof. Let $x$ be an arbitrary object of $\mathcal{X}$ lying over the scheme $U$. Let $\tau \in \{ Zariski, {\acute{e}tale}, fppf\} $. To show that an object $\mathcal{H}$ of $\textit{Mod}(\mathcal{X}_\tau , \mathcal{O}_\mathcal {X})$ is in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ it suffices show that the restriction $x^*\mathcal{H}$ (Section 96.9) is a quasi-coherent object of $\textit{Mod}((\mathit{Sch}/U)_\tau , \mathcal{O})$. See Lemmas 96.11.3 and 96.11.4. Similarly for being finite locally free. Recall that $(\mathit{Sch}/U)_\tau = \mathcal{X}_\tau /x$ is a localization of $\mathcal{X}_\tau $ at an object. Hence restriction commutes with colimits, tensor products, and forming internal hom (see Modules on Sites, Lemmas 18.14.3, 18.26.2, and 18.27.2). This reduces the lemma to Descent, Lemma 35.10.6. $\square$

[1] This is nonstandard notation.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GQB. Beware of the difference between the letter 'O' and the digit '0'.