Lemma 96.12.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. The pullback functor $f^* = f^{-1} : \textit{Mod}(\mathcal{Y}_{\acute{e}tale}, \mathcal{O}_\mathcal {Y}) \to \textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ preserves locally quasi-coherent sheaves.
Proof. Let $\mathcal{G}$ be locally quasi-coherent on $\mathcal{Y}$. Choose an object $x$ of $\mathcal{X}$ lying over the scheme $U$. The restriction $x^*f^*\mathcal{G}|_{U_{\acute{e}tale}}$ equals $(f \circ x)^*\mathcal{G}|_{U_{\acute{e}tale}}$ hence is a quasi-coherent sheaf by assumption on $\mathcal{G}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)