The Stacks project

Lemma 96.12.4. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids.

  1. The category $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ has colimits and they agree with colimits in the category $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$.

  2. The category $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ is abelian with kernels and cokernels computed in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, in other words the inclusion functor is exact.

  3. Given a short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ if two out of three are locally quasi-coherent so is the third.

  4. Given $\mathcal{F}, \mathcal{G}$ in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ the tensor product $\mathcal{F} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{G}$ in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ is an object of $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$.

  5. Given $\mathcal{F}, \mathcal{G}$ in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ with $\mathcal{F}$ of finite presentation on $\mathcal{X}_{\acute{e}tale}$ the sheaf $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ is an object of $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$.

Proof. In the arguments below $x$ denotes an arbitrary object of $\mathcal{X}$ lying over the scheme $U$. To show that an object $\mathcal{H}$ of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$ is in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ we will show that the restriction $x^*\mathcal{H}|_{U_{\acute{e}tale}} = \mathcal{H}|_{U_{\acute{e}tale}}$ is a quasi-coherent object of $\textit{Mod}(U_{\acute{e}tale}, \mathcal{O}_ U)$.

Proof of (1). Let $\mathcal{I} \to \textit{LQCoh}(\mathcal{O}_\mathcal {X})$, $i \mapsto \mathcal{F}_ i$ be a diagram. Consider the object $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. The pullback functor $x^*$ commutes with all colimits as it is a left adjoint. Hence $x^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i x^*\mathcal{F}_ i$. Similarly we have $x^*\mathcal{F}|_{U_{\acute{e}tale}} = \mathop{\mathrm{colim}}\nolimits _ i x^*\mathcal{F}_ i|_{U_{\acute{e}tale}}$. Now by assumption each $x^*\mathcal{F}_ i|_{U_{\acute{e}tale}}$ is quasi-coherent. Hence $\mathop{\mathrm{colim}}\nolimits _ i x^*\mathcal{F}_ i|_{U_{\acute{e}tale}}$ is quasi-coherent by Descent, Lemma 35.10.3. Thus $x^*\mathcal{F}|_{U_{\acute{e}tale}}$ is quasi-coherent as desired.

Proof of (2). It follows from (1) that cokernels exist in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ and agree with the cokernels computed in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ and let $\mathcal{K} = \mathop{\mathrm{Ker}}(\varphi )$ computed in $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. If we can show that $\mathcal{K}$ is a locally quasi-coherent module, then the proof of (2) is complete. To see this, note that kernels are computed in the category of presheaves (no sheafification necessary). Hence $\mathcal{K}|_{U_{\acute{e}tale}}$ is the kernel of the map $\mathcal{F}|_{U_{\acute{e}tale}} \to \mathcal{G}|_{U_{\acute{e}tale}}$, i.e., is the kernel of a map of quasi-coherent sheaves on $U_{\acute{e}tale}$ whence quasi-coherent by Descent, Lemma 35.10.3. This proves (2).

Proof of (3). Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be a short exact sequence of $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$. Since we are using the étale topology, the restriction $0 \to \mathcal{F}_1|_{U_{\acute{e}tale}} \to \mathcal{F}_2|_{U_{\acute{e}tale}} \to \mathcal{F}_3|_{U_{\acute{e}tale}} \to 0$ is a short exact sequence too. Hence (3) follows from the corresponding statement in Descent, Lemma 35.10.3.

Proof of (4). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$. Since restriction to $U_{\acute{e}tale}$ is given by pullback along the morphism of ringed topoi $U_{\acute{e}tale}\to (\mathit{Sch}/U)_{\acute{e}tale}\to \mathcal{X}_{\acute{e}tale}$ we see that the restriction of the tensor product $\mathcal{F} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{G}$ to $U_{\acute{e}tale}$ is equal to $\mathcal{F}|_{U_{\acute{e}tale}} \otimes _{\mathcal{O}_ U} \mathcal{G}|_{U_{\acute{e}tale}}$, see Modules on Sites, Lemma 18.26.2. Since $\mathcal{F}|_{U_{\acute{e}tale}}$ and $\mathcal{G}|_{U_{\acute{e}tale}}$ are quasi-coherent, so is their tensor product, see Descent, Lemma 35.10.3.

Proof of (5). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ with $\mathcal{F}$ of finite presentation. Since $(\mathit{Sch}/U)_{\acute{e}tale}= \mathcal{X}_{\acute{e}tale}/x$ is a localization of $\mathcal{X}_{\acute{e}tale}$ at an object we see that the restriction of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ to $(\mathit{Sch}/U)_{\acute{e}tale}$ is equal to

\[ \mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}|_{(\mathit{Sch}/U)_{\acute{e}tale}}}( \mathcal{F}|_{(\mathit{Sch}/U)_{\acute{e}tale}}, \mathcal{G}|_{(\mathit{Sch}/U)_{\acute{e}tale}}) \]

by Modules on Sites, Lemma 18.27.2. The morphism of ringed topoi $(U_{\acute{e}tale}, \mathcal{O}_ U) \to ((\mathit{Sch}/U)_{\acute{e}tale}, \mathcal{O})$ is flat as the pullback of $\mathcal{O}$ is $\mathcal{O}_ U$. Hence the pullback of $\mathcal{H}$ by this morphism is equal to $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_{U_{\acute{e}tale}}, \mathcal{G}|_{U_{\acute{e}tale}})$ by Modules on Sites, Lemma 18.31.4. In other words, the restriction of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ to $U_{\acute{e}tale}$ is $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_{U_{\acute{e}tale}}, \mathcal{G}|_{U_{\acute{e}tale}})$. Since $\mathcal{F}|_{U_{\acute{e}tale}}$ and $\mathcal{G}|_{U_{\acute{e}tale}}$ are quasi-coherent, so is $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_{U_{\acute{e}tale}}, \mathcal{G}|_{U_{\acute{e}tale}})$, see Descent, Lemma 35.10.3. We conclude as before. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06WM. Beware of the difference between the letter 'O' and the digit '0'.