Lemma 96.12.5. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids.
The category $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ has colimits and they agree with colimits in the categories $\textit{Mod}(\mathcal{X}_{Zar}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{O}_\mathcal {X})$, and $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$.
Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ the tensor products $\mathcal{F} \otimes _{\mathcal{O}_\mathcal {X}} \mathcal{G}$ computed in $\textit{Mod}(\mathcal{X}_{Zar}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, or $\textit{Mod}(\mathcal{O}_\mathcal {X})$ agree and the common value is an object of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$.
Given $\mathcal{F}, \mathcal{G}$ in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ with $\mathcal{F}$ finite locally free (in fppf, or equivalently étale, or equivalently Zariski topology) the internal homs $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {X}}(\mathcal{F}, \mathcal{G})$ computed in $\textit{Mod}(\mathcal{X}_{Zar}, \mathcal{O}_\mathcal {X})$, $\textit{Mod}(\mathcal{X}_{\acute{e}tale}, \mathcal{O}_\mathcal {X})$, or $\textit{Mod}(\mathcal{O}_\mathcal {X})$ agree and the common value is an object of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$.
Comments (4)
Comment #3186 by anonymous on
Comment #3187 by anonymous on
Comment #3191 by Johan on
Comment #3297 by Johan on