The Stacks project

57.3 Serre functors

The material in this section is taken from [Bondal-Kapranov].

Lemma 57.3.1. Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear triangulated category such that $\dim _ k \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) < \infty $ for all $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$. The following are equivalent

  1. there exists a $k$-linear equivalence $S : \mathcal{T} \to \mathcal{T}$ and $k$-linear isomorphisms $c_{X, Y} : \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee $ functorial in $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$,

  2. for every $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$ the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $ is representable and the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X)^\vee $ is corepresentable.

Proof. Condition (1) implies (2) since given $(S, c)$ and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$ the object $S(X)$ represents the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $ and the object $S^{-1}(X)$ corepresents the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X)^\vee $.

Assume (2). We will repeatedly use the Yoneda lemma, see Categories, Lemma 4.3.5. For every $X$ denote $S(X)$ the object representing the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $. Given $\varphi : X \to X'$, we obtain a unique arrow $S(\varphi ) : S(X) \to S(X')$ determined by the corresponding transformation of functors $\mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, -)^\vee \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X', -)^\vee $. Thus $S$ is a functor and we obtain the isomorphisms $c_{X, Y}$ by construction. It remains to show that $S$ is an equivalence. For every $X$ denote $S'(X)$ the object corepresenting the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X)^\vee $. Arguing as above we find that $S'$ is a functor. We claim that $S'$ is quasi-inverse to $S$. To see this observe that

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(S'(S(X)), Y) \]

bifunctorially, i.e., we find $S' \circ S \cong \text{id}_\mathcal {T}$. Similarly, we have

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, X) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(S'(X), Y)^\vee = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(S'(X))) \]

and we find $S \circ S' \cong \text{id}_\mathcal {T}$. $\square$

Definition 57.3.2. Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear triangulated category such that $\dim _ k \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) < \infty $ for all $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$. We say a Serre functor exists if the equivalent conditions of Lemma 57.3.1 are satisfied. In this case a Serre functor is a $k$-linear equivalence $S : \mathcal{T} \to \mathcal{T}$ endowed with $k$-linear isomorphisms $c_{X, Y} : \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee $ functorial in $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$.

Lemma 57.3.3. In the situation of Definition 57.3.2. If a Serre functor exists, then it is unique up to unique isomorphism and it is an exact functor of triangulated categories.

Proof. Given a Serre functor $S$ the object $S(X)$ represents the functor $Y \mapsto \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee $. Thus the object $S(X)$ together with the functorial identification $\mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y)^\vee = \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))$ is determined up to unique isomorphism by the Yoneda lemma (Categories, Lemma 4.3.5). Moreover, for $\varphi : X \to X'$, the arrow $S(\varphi ) : S(X) \to S(X')$ is uniquely determined by the corresponding transformation of functors $\mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, -)^\vee \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X', -)^\vee $.

For objects $X, Y$ of $\mathcal{T}$ we have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits (Y, S(X)[1])^\vee & = \mathop{\mathrm{Hom}}\nolimits (Y[-1], S(X))^\vee \\ & = \mathop{\mathrm{Hom}}\nolimits (X, Y[-1]) \\ & = \mathop{\mathrm{Hom}}\nolimits (X[1], Y) \\ & = \mathop{\mathrm{Hom}}\nolimits (Y, S(X[1]))^\vee \end{align*}

By the Yoneda lemma we conclude that there is a unique isomorphism $S(X[1]) \to S(X)[1]$ inducing the isomorphism from top left to bottom right. Since each of the isomorphisms above is functorial in both $X$ and $Y$ we find that this defines an isomorphism of functors $S \circ [1] \to [1] \circ S$.

Let $(A, B, C, f, g, h)$ be a distinguished triangle in $\mathcal{T}$. We have to show that the triangle $(S(A), S(B), S(C), S(f), S(g), S(h))$ is distinguished. Here we use the canonical isomorphism $S(A[1]) \to S(A)[1]$ constructed above to identify the target $S(A[1])$ of $S(h)$ with $S(A)[1]$. We first observe that for any $X$ in $\mathcal{T}$ the triangle $(S(A), S(B), S(C), S(f), S(g), S(h))$ induces a long exact sequence

\[ \ldots \to \mathop{\mathrm{Hom}}\nolimits (X, S(A)) \to \mathop{\mathrm{Hom}}\nolimits (X, S(B)) \to \mathop{\mathrm{Hom}}\nolimits (X, S(C)) \to \mathop{\mathrm{Hom}}\nolimits (X, S(A)[1]) \to \ldots \]

of finite dimensional $k$-vector spaces. Namely, this sequence is $k$-linear dual of the sequence

\[ \ldots \leftarrow \mathop{\mathrm{Hom}}\nolimits (A, X) \leftarrow \mathop{\mathrm{Hom}}\nolimits (B, X) \leftarrow \mathop{\mathrm{Hom}}\nolimits (C, X) \leftarrow \mathop{\mathrm{Hom}}\nolimits (A[1], X) \leftarrow \ldots \]

which is exact by Derived Categories, Lemma 13.4.2. Next, we choose a distinguished triangle $(S(A), E, S(C), i, p, S(h))$ which is possible by axioms TR1 and TR2. We want to construct the dotted arrow making following diagram commute

\[ \xymatrix{ S(C)[-1] \ar[r]_-{S(h[-1])} & S(A) \ar[r]_{S(f)} & S(B) \ar[r]_{S(g)} & S(C) \ar[r]_{S(h)} & S(A)[1] \\ S(C)[-1] \ar[r]^-{S(h[-1])} \ar@{=}[u] & S(A) \ar[r]^ i \ar@{=}[u] & E \ar[r]^ p \ar@{..>}[u]^\varphi & S(C) \ar[r]^{S(h)} \ar@{=}[u] & S(A)[1] \ar@{=}[u] } \]

Namely, if we have $\varphi $, then we claim for any $X$ the resulting map $\mathop{\mathrm{Hom}}\nolimits (X, E) \to \mathop{\mathrm{Hom}}\nolimits (X, S(B))$ will be an isomorphism of $k$-vector spaces. Namely, we will obtain a commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits (X, S(C)[-1]) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(B)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(C)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)[1]) \\ \mathop{\mathrm{Hom}}\nolimits (X, S(C)[-1]) \ar[r] \ar@{=}[u] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)) \ar[r] \ar@{=}[u] & \mathop{\mathrm{Hom}}\nolimits (X, E) \ar[r] \ar[u]^\varphi & \mathop{\mathrm{Hom}}\nolimits (X, S(C)) \ar[r] \ar@{=}[u] & \mathop{\mathrm{Hom}}\nolimits (X, S(A)[1]) \ar@{=}[u] } \]

with exact rows (see above) and we can apply the 5 lemma (Homology, Lemma 12.5.20) to see that the middle arrow is an isomorphism. By the Yoneda lemma we conclude that $\varphi $ is an isomorphism. To find $\varphi $ consider the following diagram

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits (E, S(C)) \ar[r] & \mathop{\mathrm{Hom}}\nolimits (S(A), S(C)) \\ \mathop{\mathrm{Hom}}\nolimits (E, S(B)) \ar[u] \ar[r] & \mathop{\mathrm{Hom}}\nolimits (S(A), S(B)) \ar[u] } \]

The elements $p$ and $S(f)$ in positions $(0, 1)$ and $(1, 0)$ define a cohomology class $\xi $ in the total complex of this double complex. The existence of $\varphi $ is equivalent to whether $\xi $ is zero. If we take $k$-linear duals of this and we use the defining property of $S$ we obtain

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits (C, E) \ar[d] & \mathop{\mathrm{Hom}}\nolimits (C, S(A)) \ar[l] \ar[d] \\ \mathop{\mathrm{Hom}}\nolimits (B, E) & \mathop{\mathrm{Hom}}\nolimits (B, S(A)) \ar[l] } \]

Since both $A \to B \to C$ and $S(A) \to E \to S(C)$ are distinguished triangles, we know by TR3 that given elements $\alpha \in \mathop{\mathrm{Hom}}\nolimits (C, E)$ and $\beta \in \mathop{\mathrm{Hom}}\nolimits (B, S(A))$ mapping to the same element in $\mathop{\mathrm{Hom}}\nolimits (B, E)$, there exists an element in $\mathop{\mathrm{Hom}}\nolimits (C, S(A))$ mapping to both $\alpha $ and $\beta $. In other words, the cohomology of the total complex associated to this double complex is zero in degree $1$, i.e., the degree corresponding to $\mathop{\mathrm{Hom}}\nolimits (C, E) \oplus \mathop{\mathrm{Hom}}\nolimits (B, S(A))$. Taking duals the same must be true for the previous one which concludes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FY3. Beware of the difference between the letter 'O' and the digit '0'.