Lemma 13.4.2. Let $\mathcal{D}$ be a pre-triangulated category. For any object $W$ of $\mathcal{D}$ the functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(W, -)$ is homological, and the functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(-, W)$ is cohomological.
Proof. Consider a distinguished triangle $(X, Y, Z, f, g, h)$. We have already seen that $g \circ f = 0$, see Lemma 13.4.1. Suppose $a : W \to Y$ is a morphism such that $g \circ a = 0$. Then we get a commutative diagram
Both rows are distinguished triangles (use TR1 for the top row). Hence we can fill the dotted arrow $b$ (first rotate using TR2, then apply TR3, and then rotate back). This proves the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: