Definition 57.3.2. Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear triangulated category such that $\dim _ k \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) < \infty $ for all $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$. We say a Serre functor exists if the equivalent conditions of Lemma 57.3.1 are satisfied. In this case a Serre functor is a $k$-linear equivalence $S : \mathcal{T} \to \mathcal{T}$ endowed with $k$-linear isomorphisms $c_{X, Y} : \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee $ functorial in $X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)