The Stacks project

42.69 Appendix B: Alternative approaches

In this appendix we first briefly try to connect the material in the main text with $K$-theory of coherent sheaves. In particular we describe how cupping with $c_1$ of an invertible module is related to tensoring by this invertible module, see Lemma 42.69.7. This material is obviously very interesting and deserves a much more detailed and expansive exposition.

42.69.1 Rational equivalence and K-groups

This section is a continuation of Section 42.23. The motivation for the following lemma is Homology, Lemma 12.11.3.

Lemma 42.69.2. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be a scheme locally of finite type over $S$. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let

\[ \xymatrix{ \ldots \ar[r] & \mathcal{F} \ar[r]^\varphi & \mathcal{F} \ar[r]^\psi & \mathcal{F} \ar[r]^\varphi & \mathcal{F} \ar[r] & \ldots } \]

be a complex as in Homology, Equation (12.11.2.1). Assume that

  1. $\dim _\delta (\text{Supp}(\mathcal{F})) \leq k + 1$.

  2. $\dim _\delta (\text{Supp}(H^ i(\mathcal{F}, \varphi , \psi ))) \leq k$ for $i = 0, 1$.

Then we have

\[ [H^0(\mathcal{F}, \varphi , \psi )]_ k \sim _{rat} [H^1(\mathcal{F}, \varphi , \psi )]_ k \]

as $k$-cycles on $X$.

Proof. Let $\{ W_ j\} _{j \in J}$ be the collection of irreducible components of $\text{Supp}(\mathcal{F})$ which have $\delta $-dimension $k + 1$. Note that $\{ W_ j\} $ is a locally finite collection of closed subsets of $X$ by Lemma 42.10.1. For every $j$, let $\xi _ j \in W_ j$ be the generic point. Set

\[ f_ j = \det \nolimits _{\kappa (\xi _ j)} (\mathcal{F}_{\xi _ j}, \varphi _{\xi _ j}, \psi _{\xi _ j}) \in R(W_ j)^*. \]

See Definition 42.68.13 for notation. We claim that

\[ - [H^0(\mathcal{F}, \varphi , \psi )]_ k + [H^1(\mathcal{F}, \varphi , \psi )]_ k = \sum (W_ j \to X)_*\text{div}(f_ j) \]

If we prove this then the lemma follows.

Let $Z \subset X$ be an integral closed subscheme of $\delta $-dimension $k$. To prove the equality above it suffices to show that the coefficient $n$ of $[Z]$ in $ [H^0(\mathcal{F}, \varphi , \psi )]_ k - [H^1(\mathcal{F}, \varphi , \psi )]_ k $ is the same as the coefficient $m$ of $[Z]$ in $ \sum (W_ j \to X)_*\text{div}(f_ j) $. Let $\xi \in Z$ be the generic point. Consider the local ring $A = \mathcal{O}_{X, \xi }$. Let $M = \mathcal{F}_\xi $ as an $A$-module. Denote $\varphi , \psi : M \to M$ the action of $\varphi , \psi $ on the stalk. By our choice of $\xi \in Z$ we have $\delta (\xi ) = k$ and hence $\dim (\text{Supp}(M)) = 1$. Finally, the integral closed subschemes $W_ j$ passing through $\xi $ correspond to the minimal primes $\mathfrak q_ i$ of $\text{Supp}(M)$. In each case the element $f_ j \in R(W_ j)^*$ corresponds to the element $\det _{\kappa (\mathfrak q_ i)}(M_{\mathfrak q_ i}, \varphi , \psi )$ in $\kappa (\mathfrak q_ i)^*$. Hence we see that

\[ n = - e_ A(M, \varphi , \psi ) \]

and

\[ m = \sum \text{ord}_{A/\mathfrak q_ i} (\det \nolimits _{\kappa (\mathfrak q_ i)}(M_{\mathfrak q_ i}, \varphi , \psi )) \]

Thus the result follows from Proposition 42.68.43. $\square$

Lemma 42.69.3. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be a scheme locally of finite type over $S$. The map

\[ \mathop{\mathrm{CH}}\nolimits _ k(X) \longrightarrow K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)) \]

from Lemma 42.23.4 induces a bijection from $\mathop{\mathrm{CH}}\nolimits _ k(X)$ onto the image $B_ k(X)$ of the map

\[ K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X)) \longrightarrow K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)). \]

Proof. By Lemma 42.23.2 we have $Z_ k(X) = K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X))$ compatible with the map of Lemma 42.23.4. Thus, suppose we have an element $[A] - [B]$ of $K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X))$ which maps to zero in $B_ k(X)$, i.e., maps to zero in $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$. We have to show that $[A] - [B]$ corresponds to a cycle rationally equivalent to zero on $X$. Suppose $[A] = [\mathcal{A}]$ and $[B] = [\mathcal{B}]$ for some coherent sheaves $\mathcal{A}, \mathcal{B}$ on $X$ supported in $\delta $-dimension $\leq k$. The assumption that $[A] - [B]$ maps to zero in the group $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$ means that there exists coherent sheaves $\mathcal{A}', \mathcal{B}'$ on $X$ supported in $\delta $-dimension $\leq k - 1$ such that $[\mathcal{A} \oplus \mathcal{A}'] - [\mathcal{B} \oplus \mathcal{B}']$ is zero in $K_0(\textit{Coh}_{k + 1}(X))$ (use part (1) of Homology, Lemma 12.11.3). By part (2) of Homology, Lemma 12.11.3 this means there exists a $(2, 1)$-periodic complex $(\mathcal{F}, \varphi , \psi )$ in the category $\textit{Coh}_{\leq k + 1}(X)$ such that $\mathcal{A} \oplus \mathcal{A}' = H^0(\mathcal{F}, \varphi , \psi )$ and $\mathcal{B} \oplus \mathcal{B}' = H^1(\mathcal{F}, \varphi , \psi )$. By Lemma 42.69.2 this implies that

\[ [\mathcal{A} \oplus \mathcal{A}']_ k \sim _{rat} [\mathcal{B} \oplus \mathcal{B}']_ k \]

This proves that $[A] - [B]$ maps to a cycle rationally equivalent to zero by the map

\[ K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X)) \longrightarrow Z_ k(X) \]

of Lemma 42.23.2. This is what we had to prove and the proof is complete. $\square$

42.69.4 Cartier divisors and K-groups

In this section we describe how the intersection with the first Chern class of an invertible sheaf $\mathcal{L}$ corresponds to tensoring with $\mathcal{L} - \mathcal{O}$ in $K$-groups.

Lemma 42.69.5. Let $A$ be a Noetherian local ring. Let $M$ be a finite $A$-module. Let $a, b \in A$. Assume

  1. $\dim (A) = 1$,

  2. both $a$ and $b$ are nonzerodivisors in $A$,

  3. $A$ has no embedded primes,

  4. $M$ has no embedded associated primes,

  5. $\text{Supp}(M) = \mathop{\mathrm{Spec}}(A)$.

Let $I = \{ x \in A \mid x(a/b) \in A\} $. Let $\mathfrak q_1, \ldots , \mathfrak q_ t$ be the minimal primes of $A$. Then $(a/b)IM \subset M$ and

\[ \text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM) = \sum \nolimits _ i \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b) \]

Proof. Since $M$ has no embedded associated primes, and since the support of $M$ is $\mathop{\mathrm{Spec}}(A)$ we see that $\text{Ass}(M) = \{ \mathfrak q_1, \ldots , \mathfrak q_ t\} $. Hence $a$, $b$ are nonzerodivisors on $M$. Note that

\begin{align*} & \text{length}_ A(M/(a/b)IM) \\ & = \text{length}_ A(bM/aIM) \\ & = \text{length}_ A(M/aIM) - \text{length}_ A(M/bM) \\ & = \text{length}_ A(M/aM) + \text{length}_ A(aM/aIM) - \text{length}_ A(M/bM) \\ & = \text{length}_ A(M/aM) + \text{length}_ A(M/IM) - \text{length}_ A(M/bM) \end{align*}

as the injective map $b : M \to bM$ maps $(a/b)IM$ to $aIM$ and the injective map $a : M \to aM$ maps $IM$ to $aIM$. Hence the left hand side of the equation of the lemma is equal to

\[ \text{length}_ A(M/aM) - \text{length}_ A(M/bM). \]

Applying the second formula of Lemma 42.3.2 with $x = a, b$ respectively and using Algebra, Definition 10.121.2 of the $\text{ord}$-functions we get the result. $\square$

Lemma 42.69.6. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Let $s \in \Gamma (X, \mathcal{K}_ X(\mathcal{L}))$ be a meromorphic section of $\mathcal{L}$. Assume

  1. $\dim _\delta (X) \leq k + 1$,

  2. $X$ has no embedded points,

  3. $\mathcal{F}$ has no embedded associated points,

  4. the support of $\mathcal{F}$ is $X$, and

  5. the section $s$ is regular meromorphic.

In this situation let $\mathcal{I} \subset \mathcal{O}_ X$ be the ideal of denominators of $s$, see Divisors, Definition 31.23.10. Then we have the following:

  1. there are short exact sequences

    \[ \begin{matrix} 0 & \to & \mathcal{I}\mathcal{F} & \xrightarrow {1} & \mathcal{F} & \to & \mathcal{Q}_1 & \to & 0 \\ 0 & \to & \mathcal{I}\mathcal{F} & \xrightarrow {s} & \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L} & \to & \mathcal{Q}_2 & \to & 0 \end{matrix} \]
  2. the coherent sheaves $\mathcal{Q}_1$, $\mathcal{Q}_2$ are supported in $\delta $-dimension $\leq k$,

  3. the section $s$ restricts to a regular meromorphic section $s_ i$ on every irreducible component $X_ i$ of $X$ of $\delta $-dimension $k + 1$, and

  4. writing $[\mathcal{F}]_{k + 1} = \sum m_ i[X_ i]$ we have

    \[ [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i) \]

    in $Z_ k(X)$, in particular

    \[ [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} \]

    in $\mathop{\mathrm{CH}}\nolimits _ k(X)$.

Proof. Recall from Divisors, Lemma 31.24.5 the existence of injective maps $1 : \mathcal{I}\mathcal{F} \to \mathcal{F}$ and $s : \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes _{\mathcal{O}_ X}\mathcal{L}$ whose cokernels are supported on a closed nowhere dense subsets $T$. Denote $\mathcal{Q}_ i$ there cokernels as in the lemma. We conclude that $\dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k$. By Divisors, Lemmas 31.23.5 and 31.23.8 the pullbacks $s_ i$ are defined and are regular meromorphic sections for $\mathcal{L}|_{X_ i}$. The equality of cycles in (4) implies the equality of cycle classes in (4). Hence the only remaining thing to show is that

\[ [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i) \]

holds in $Z_ k(X)$. To see this, let $Z \subset X$ be an integral closed subscheme of $\delta $-dimension $k$. Let $\xi \in Z$ be the generic point. Let $A = \mathcal{O}_{X, \xi }$ and $M = \mathcal{F}_\xi $. Moreover, choose a generator $s_\xi \in \mathcal{L}_\xi $. Then we can write $s = (a/b) s_\xi $ where $a, b \in A$ are nonzerodivisors. In this case $I = \mathcal{I}_\xi = \{ x \in A \mid x(a/b) \in A\} $. In this case the coefficient of $[Z]$ in the left hand side is

\[ \text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM) \]

and the coefficient of $[Z]$ in the right hand side is

\[ \sum \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b) \]

where $\mathfrak q_1, \ldots , \mathfrak q_ t$ are the minimal primes of the $1$-dimensional local ring $A$. Hence the result follows from Lemma 42.69.5. $\square$

Lemma 42.69.7. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Assume $\dim _\delta (\text{Supp}(\mathcal{F})) \leq k + 1$. Then the element

\[ [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] \in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)) \]

lies in the subgroup $B_ k(X)$ of Lemma 42.69.3 and maps to the element $c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1}$ via the map $B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X)$.

Proof. Let

\[ 0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0 \]

be the short exact sequence constructed in Divisors, Lemma 31.4.6. This in particular means that $\mathcal{F}'$ has no embedded associated points. Since the support of $\mathcal{K}$ is nowhere dense in the support of $\mathcal{F}$ we see that $\dim _\delta (\text{Supp}(\mathcal{K})) \leq k$. We may re-apply Divisors, Lemma 31.4.6 starting with $\mathcal{K}$ to get a short exact sequence

\[ 0 \to \mathcal{K}'' \to \mathcal{K} \to \mathcal{K}' \to 0 \]

where now $\dim _\delta (\text{Supp}(\mathcal{K}'')) < k$ and $\mathcal{K}'$ has no embedded associated points. Suppose we can prove the lemma for the coherent sheaves $\mathcal{F}'$ and $\mathcal{K}'$. Then we see from the equations

\[ [\mathcal{F}]_{k + 1} = [\mathcal{F}']_{k + 1} + [\mathcal{K}']_{k + 1} + [\mathcal{K}'']_{k + 1} \]

(use Lemma 42.10.4),

\[ [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [\mathcal{F}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}'] + [\mathcal{K}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'] + [\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}''] \]

(use the $\otimes \mathcal{L}$ is exact) and the trivial vanishing of $[\mathcal{K}'']_{k + 1}$ and $[\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'']$ in $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$ that the result holds for $\mathcal{F}$. What this means is that we may assume that the sheaf $\mathcal{F}$ has no embedded associated points.

Assume $X$, $\mathcal{F}$ as in the lemma, and assume in addition that $\mathcal{F}$ has no embedded associated points. Consider the sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ X$, the corresponding closed subscheme $i : Z \to X$ and the coherent $\mathcal{O}_ Z$-module $\mathcal{G}$ constructed in Divisors, Lemma 31.4.7. Recall that $Z$ is a locally Noetherian scheme without embedded points, $\mathcal{G}$ is a coherent sheaf without embedded associated points, with $\text{Supp}(\mathcal{G}) = Z$ and such that $i_*\mathcal{G} = \mathcal{F}$. Moreover, set $\mathcal{N} = \mathcal{L}|_ Z$.

By Divisors, Lemma 31.25.4 the invertible sheaf $\mathcal{N}$ has a regular meromorphic section $s$ over $Z$. Let us denote $\mathcal{J} \subset \mathcal{O}_ Z$ the sheaf of denominators of $s$. By Lemma 42.69.6 there exist short exact sequences

\[ \begin{matrix} 0 & \to & \mathcal{J}\mathcal{G} & \xrightarrow {1} & \mathcal{G} & \to & \mathcal{Q}_1 & \to & 0 \\ 0 & \to & \mathcal{J}\mathcal{G} & \xrightarrow {s} & \mathcal{G} \otimes _{\mathcal{O}_ Z} \mathcal{N} & \to & \mathcal{Q}_2 & \to & 0 \end{matrix} \]

such that $\dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k$ and such that the cycle $ [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k $ is a representative of $c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1}$. We see (using the fact that $i_*(\mathcal{G} \otimes \mathcal{N}) = \mathcal{F} \otimes \mathcal{L}$ by the projection formula, see Cohomology, Lemma 20.54.2) that

\[ [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [i_*\mathcal{Q}_2] - [i_*\mathcal{Q}_1] \]

in $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$. This already shows that $[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}]$ is an element of $B_ k(X)$. Moreover we have

\begin{eqnarray*} [i_*\mathcal{Q}_2]_ k - [i_*\mathcal{Q}_1]_ k & = & i_*\left( [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k \right) \\ & = & i_*\left(c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1} \right) \\ & = & c_1(\mathcal{L}) \cap i_*[\mathcal{G}]_{k + 1} \\ & = & c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} \end{eqnarray*}

by the above and Lemmas 42.26.4 and 42.12.4. And this agree with the image of the element under $B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X)$ by definition. Hence the lemma is proved. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AYD. Beware of the difference between the letter 'O' and the digit '0'.