The Stacks project

Lemma 42.69.7. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Assume $\dim _\delta (\text{Supp}(\mathcal{F})) \leq k + 1$. Then the element

\[ [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] \in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)) \]

lies in the subgroup $B_ k(X)$ of Lemma 42.69.3 and maps to the element $c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1}$ via the map $B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X)$.

Proof. Let

\[ 0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0 \]

be the short exact sequence constructed in Divisors, Lemma 31.4.6. This in particular means that $\mathcal{F}'$ has no embedded associated points. Since the support of $\mathcal{K}$ is nowhere dense in the support of $\mathcal{F}$ we see that $\dim _\delta (\text{Supp}(\mathcal{K})) \leq k$. We may re-apply Divisors, Lemma 31.4.6 starting with $\mathcal{K}$ to get a short exact sequence

\[ 0 \to \mathcal{K}'' \to \mathcal{K} \to \mathcal{K}' \to 0 \]

where now $\dim _\delta (\text{Supp}(\mathcal{K}'')) < k$ and $\mathcal{K}'$ has no embedded associated points. Suppose we can prove the lemma for the coherent sheaves $\mathcal{F}'$ and $\mathcal{K}'$. Then we see from the equations

\[ [\mathcal{F}]_{k + 1} = [\mathcal{F}']_{k + 1} + [\mathcal{K}']_{k + 1} + [\mathcal{K}'']_{k + 1} \]

(use Lemma 42.10.4),

\[ [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [\mathcal{F}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}'] + [\mathcal{K}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'] + [\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}''] \]

(use the $\otimes \mathcal{L}$ is exact) and the trivial vanishing of $[\mathcal{K}'']_{k + 1}$ and $[\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'']$ in $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$ that the result holds for $\mathcal{F}$. What this means is that we may assume that the sheaf $\mathcal{F}$ has no embedded associated points.

Assume $X$, $\mathcal{F}$ as in the lemma, and assume in addition that $\mathcal{F}$ has no embedded associated points. Consider the sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ X$, the corresponding closed subscheme $i : Z \to X$ and the coherent $\mathcal{O}_ Z$-module $\mathcal{G}$ constructed in Divisors, Lemma 31.4.7. Recall that $Z$ is a locally Noetherian scheme without embedded points, $\mathcal{G}$ is a coherent sheaf without embedded associated points, with $\text{Supp}(\mathcal{G}) = Z$ and such that $i_*\mathcal{G} = \mathcal{F}$. Moreover, set $\mathcal{N} = \mathcal{L}|_ Z$.

By Divisors, Lemma 31.25.4 the invertible sheaf $\mathcal{N}$ has a regular meromorphic section $s$ over $Z$. Let us denote $\mathcal{J} \subset \mathcal{O}_ Z$ the sheaf of denominators of $s$. By Lemma 42.69.6 there exist short exact sequences

\[ \begin{matrix} 0 & \to & \mathcal{J}\mathcal{G} & \xrightarrow {1} & \mathcal{G} & \to & \mathcal{Q}_1 & \to & 0 \\ 0 & \to & \mathcal{J}\mathcal{G} & \xrightarrow {s} & \mathcal{G} \otimes _{\mathcal{O}_ Z} \mathcal{N} & \to & \mathcal{Q}_2 & \to & 0 \end{matrix} \]

such that $\dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k$ and such that the cycle $ [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k $ is a representative of $c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1}$. We see (using the fact that $i_*(\mathcal{G} \otimes \mathcal{N}) = \mathcal{F} \otimes \mathcal{L}$ by the projection formula, see Cohomology, Lemma 20.54.2) that

\[ [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [i_*\mathcal{Q}_2] - [i_*\mathcal{Q}_1] \]

in $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$. This already shows that $[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}]$ is an element of $B_ k(X)$. Moreover we have

\begin{eqnarray*} [i_*\mathcal{Q}_2]_ k - [i_*\mathcal{Q}_1]_ k & = & i_*\left( [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k \right) \\ & = & i_*\left(c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1} \right) \\ & = & c_1(\mathcal{L}) \cap i_*[\mathcal{G}]_{k + 1} \\ & = & c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} \end{eqnarray*}

by the above and Lemmas 42.26.4 and 42.12.4. And this agree with the image of the element under $B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X)$ by definition. Hence the lemma is proved. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02SX. Beware of the difference between the letter 'O' and the digit '0'.