The Stacks project

Proposition 42.68.43. Let $R$ be a local Noetherian ring with residue field $\kappa $. Suppose that $(M, \varphi , \psi )$ is a $(2, 1)$-periodic complex over $R$. Assume

  1. $M$ is a finite $R$-module,

  2. the cohomology modules of $(M, \varphi , \psi )$ are of finite length, and

  3. $\dim (\text{Supp}(M)) = 1$.

Let $\mathfrak q_ i$, $i = 1, \ldots , t$ be the minimal primes of the support of $M$. Then we have1

\[ - e_ R(M, \varphi , \psi ) = \sum \nolimits _{i = 1, \ldots , t} \text{ord}_{R/\mathfrak q_ i}\left( \det \nolimits _{\kappa (\mathfrak q_ i)} (M_{\mathfrak q_ i}, \varphi _{\mathfrak q_ i}, \psi _{\mathfrak q_ i}) \right) \]

Proof. We first reduce to the case $t = 1$ in the following way. Note that $\text{Supp}(M) = \{ \mathfrak m, \mathfrak q_1, \ldots , \mathfrak q_ t\} $, where $\mathfrak m \subset R$ is the maximal ideal. Let $M_ i$ denote the image of $M \to M_{\mathfrak q_ i}$, so $\text{Supp}(M_ i) = \{ \mathfrak m, \mathfrak q_ i\} $. The map $\varphi $ (resp. $\psi $) induces an $R$-module map $\varphi _ i : M_ i \to M_ i$ (resp. $\psi _ i : M_ i \to M_ i$). Thus we get a morphism of $(2, 1)$-periodic complexes

\[ (M, \varphi , \psi ) \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , t} (M_ i, \varphi _ i, \psi _ i). \]

The kernel and cokernel of this map have support contained in $\{ \mathfrak m\} $. Hence by Lemma 42.2.5 we have

\[ e_ R(M, \varphi , \psi ) = \sum \nolimits _{i = 1, \ldots , t} e_ R(M_ i, \varphi _ i, \psi _ i) \]

On the other hand we clearly have $M_{\mathfrak q_ i} = M_{i, \mathfrak q_ i}$, and hence the terms of the right hand side of the formula of the lemma are equal to the expressions

\[ \text{ord}_{R/\mathfrak q_ i}\left( \det \nolimits _{\kappa (\mathfrak q_ i)} (M_{i, \mathfrak q_ i}, \varphi _{i, \mathfrak q_ i}, \psi _{i, \mathfrak q_ i}) \right) \]

In other words, if we can prove the lemma for each of the modules $M_ i$, then the lemma holds. This reduces us to the case $t = 1$.

Assume we have a $(2, 1)$-periodic complex $(M, \varphi , \psi )$ over a Noetherian local ring with $M$ a finite $R$-module, $\text{Supp}(M) = \{ \mathfrak m, \mathfrak q\} $, and finite length cohomology modules. The proof in this case follows from Lemma 42.68.41 and careful bookkeeping. Denote $K_\varphi = \mathop{\mathrm{Ker}}(\varphi )$, $I_\varphi = \mathop{\mathrm{Im}}(\varphi )$, $K_\psi = \mathop{\mathrm{Ker}}(\psi )$, and $I_\psi = \mathop{\mathrm{Im}}(\psi )$. Since $R$ is Noetherian these are all finite $R$-modules. Set

\[ a = \text{length}_{R_{\mathfrak q}}(I_{\varphi , \mathfrak q}) = \text{length}_{R_{\mathfrak q}}(K_{\psi , \mathfrak q}), \quad b = \text{length}_{R_{\mathfrak q}}(I_{\psi , \mathfrak q}) = \text{length}_{R_{\mathfrak q}}(K_{\varphi , \mathfrak q}). \]

Equalities because the complex becomes exact after localizing at $\mathfrak q$. Note that $l = \text{length}_{R_{\mathfrak q}}(M_{\mathfrak q})$ is equal to $l = a + b$.

We are going to use Lemma 42.68.42 to choose sequences of elements in finite $R$-modules $N$ with support contained in $\{ \mathfrak m, \mathfrak q\} $. In this case $N_{\mathfrak q}$ has finite length, say $n \in \mathbf{N}$. Let us call a sequence $w_1, \ldots , w_ n \in N$ with properties (1) and (2) of Lemma 42.68.42 a “good sequence”. Note that the quotient $N/\langle w_1, \ldots , w_ n \rangle $ of $N$ by the submodule generated by a good sequence has support (contained in) $\{ \mathfrak m\} $ and hence has finite length (Algebra, Lemma 10.62.3). Moreover, the symbol $[w_1, \ldots , w_ n] \in \det _{\kappa (\mathfrak q)}(N_{\mathfrak q})$ is a generator, see Lemma 42.68.5.

Having said this we choose good sequences

\[ \begin{matrix} x_1, \ldots , x_ b & \text{in} & K_\varphi , & t_1, \ldots , t_ a & \text{in} & K_\psi , \\ y_1, \ldots , y_ a & \text{in} & I_\varphi \cap \langle t_1, \ldots t_ a\rangle , & s_1, \ldots , s_ b & \text{in} & I_\psi \cap \langle x_1, \ldots , x_ b\rangle . \end{matrix} \]

We will adjust our choices a little bit as follows. Choose lifts $\tilde y_ i \in M$ of $y_ i \in I_\varphi $ and $\tilde s_ i \in M$ of $s_ i \in I_\psi $. It may not be the case that $\mathfrak q \tilde y_1 \subset \langle x_1, \ldots , x_ b\rangle $ and it may not be the case that $\mathfrak q \tilde s_1 \subset \langle t_1, \ldots , t_ a\rangle $. However, using that $\mathfrak q$ is finitely generated (as in the proof of Lemma 42.68.42) we can find a $d \in R$, $d \not\in \mathfrak q$ such that $\mathfrak q d\tilde y_1 \subset \langle x_1, \ldots , x_ b\rangle $ and $\mathfrak q d\tilde s_1 \subset \langle t_1, \ldots , t_ a\rangle $. Thus after replacing $y_ i$ by $dy_ i$, $\tilde y_ i$ by $d\tilde y_ i$, $s_ i$ by $ds_ i$ and $\tilde s_ i$ by $d\tilde s_ i$ we see that we may assume also that $x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ b$ and $t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b$ are good sequences in $M$.

Finally, we choose a good sequence $z_1, \ldots , z_ l$ in the finite $R$-module

\[ \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a \rangle \cap \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b \rangle . \]

Note that this is also a good sequence in $M$.

Since $I_{\varphi , \mathfrak q} = K_{\psi , \mathfrak q}$ there is a unique element $h \in \kappa (\mathfrak q)$ such that $[y_1, \ldots , y_ a] = h [t_1, \ldots , t_ a]$ inside $\det _{\kappa (\mathfrak q)}(K_{\psi , \mathfrak q})$. Similarly, as $I_{\psi , \mathfrak q} = K_{\varphi , \mathfrak q}$ there is a unique element $h \in \kappa (\mathfrak q)$ such that $[s_1, \ldots , s_ b] = g [x_1, \ldots , x_ b]$ inside $\det _{\kappa (\mathfrak q)}(K_{\varphi , \mathfrak q})$. We can also do this with the three good sequences we have in $M$. All in all we get the following identities

\begin{align*} [y_1, \ldots , y_ a] & = h [t_1, \ldots , t_ a] \\ [s_1, \ldots , s_ b] & = g [x_1, \ldots , x_ b] \\ [z_1, \ldots , z_ l] & = f_\varphi [x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a] \\ [z_1, \ldots , z_ l] & = f_\psi [t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b] \end{align*}

for some $g, h, f_\varphi , f_\psi \in \kappa (\mathfrak q)$.

Having set up all this notation let us compute $\det _{\kappa (\mathfrak q)}(M, \varphi , \psi )$. Namely, consider the element $[z_1, \ldots , z_ l]$. Under the map $\gamma _\psi \circ \sigma \circ \gamma _\varphi ^{-1}$ of Definition 42.68.13 we have

\begin{eqnarray*} [z_1, \ldots , z_ l] & = & f_\varphi [x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a] \\ & \mapsto & f_\varphi [x_1, \ldots , x_ b] \otimes [y_1, \ldots , y_ a] \\ & \mapsto & f_\varphi h/g [t_1, \ldots , t_ a] \otimes [s_1, \ldots , s_ b] \\ & \mapsto & f_\varphi h/g [t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b] \\ & = & f_\varphi h/f_\psi g [z_1, \ldots , z_ l] \end{eqnarray*}

This means that $\det _{\kappa (\mathfrak q)} (M_{\mathfrak q}, \varphi _{\mathfrak q}, \psi _{\mathfrak q})$ is equal to $f_\varphi h/f_\psi g$ up to a sign.

We abbreviate the following quantities

\begin{eqnarray*} k_\varphi & = & \text{length}_ R(K_\varphi /\langle x_1, \ldots , x_ b\rangle ) \\ k_\psi & = & \text{length}_ R(K_\psi /\langle t_1, \ldots , t_ a\rangle ) \\ i_\varphi & = & \text{length}_ R(I_\varphi /\langle y_1, \ldots , y_ a\rangle ) \\ i_\psi & = & \text{length}_ R(I_\psi /\langle s_1, \ldots , s_ a\rangle ) \\ m_\varphi & = & \text{length}_ R(M/ \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a\rangle ) \\ m_\psi & = & \text{length}_ R(M/ \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b\rangle ) \\ \delta _\varphi & = & \text{length}_ R( \langle x_1, \ldots , x_ b, \tilde y_1, \ldots , \tilde y_ a\rangle \langle z_1, \ldots , z_ l\rangle ) \\ \delta _\psi & = & \text{length}_ R( \langle t_1, \ldots , t_ a, \tilde s_1, \ldots , \tilde s_ b\rangle \langle z_1, \ldots , z_ l\rangle ) \end{eqnarray*}

Using the exact sequences $0 \to K_\varphi \to M \to I_\varphi \to 0$ we get $m_\varphi = k_\varphi + i_\varphi $. Similarly we have $m_\psi = k_\psi + i_\psi $. We have $\delta _\varphi + m_\varphi = \delta _\psi + m_\psi $ since this is equal to the colength of $\langle z_1, \ldots , z_ l \rangle $ in $M$. Finally, we have

\[ \delta _\varphi = \text{ord}_{R/\mathfrak q}(f_\varphi ), \quad \delta _\psi = \text{ord}_{R/\mathfrak q}(f_\psi ) \]

by our first application of the key Lemma 42.68.41.

Next, let us compute the multiplicity of the periodic complex

\begin{eqnarray*} e_ R(M, \varphi , \psi ) & = & \text{length}_ R(K_\varphi /I_\psi ) - \text{length}_ R(K_\psi /I_\varphi ) \\ & = & \text{length}_ R( \langle x_1, \ldots , x_ b\rangle / \langle s_1, \ldots , s_ b\rangle ) + k_\varphi - i_\psi \\ & & - \text{length}_ R( \langle t_1, \ldots , t_ a\rangle / \langle y_1, \ldots , y_ a\rangle ) - k_\psi + i_\varphi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + k_\varphi - i_\psi - k_\psi + i_\varphi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + m_\varphi - m_\psi \\ & = & \text{ord}_{R/\mathfrak q}(g/h) + \delta _\psi - \delta _\varphi \\ & = & \text{ord}_{R/\mathfrak q}(f_\psi g/f_\varphi h) \end{eqnarray*}

where we used the key Lemma 42.68.41 twice in the third equality. By our computation of $\det _{\kappa (\mathfrak q)} (M_{\mathfrak q}, \varphi _{\mathfrak q}, \psi _{\mathfrak q})$ this proves the proposition. $\square$

[1] Obviously we could get rid of the minus sign by redefining $\det _\kappa (M, \varphi , \psi )$ as the inverse of its current value, see Definition 42.68.13.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02QD. Beware of the difference between the letter 'O' and the digit '0'.