Lemma 80.11.3. Let $S$ be a scheme. Let $\{ X_ i \to X\} _{i \in I}$ be an fppf covering of algebraic spaces over $S$.
Fppf descent data for algebraic spaces are effective.
Proof. Proof of (1). By Descent on Spaces, Lemma 74.23.1 this translates into the statement that an fppf sheaf $F$ endowed with a map $F \to X$ is an algebraic space provided that each $F \times _ X X_ i$ is an algebraic space. The restriction on the cardinality of $I$ implies that coproducts of algebraic spaces indexed by $I$ are algebraic spaces, see Spaces, Lemma 65.8.4 and Sets, Lemma 3.9.9. The morphism
is representable by algebraic spaces (as the base change of $\coprod X_ i \to X$, see Lemma 80.3.3), and surjective, flat, and locally of finite presentation (as the base change of $\coprod X_ i \to X$, see Lemma 80.4.2). Hence part (1) follows from Theorem 80.10.1.
Proof of (2). First we apply Descent on Spaces, Lemma 74.23.1 to obtain an fppf sheaf $F$ endowed with a map $F \to X$ such that $F \times _ X X_ i = Y_ i$ for all $i \in I$. Our goal is to show that $F$ is an algebraic space. Choose a scheme $U$ and a surjective étale morphism $U \to X$. Then $F' = U \times _ X F \to F$ is representable, surjective, and étale as the base change of $U \to X$. By Theorem 80.10.1 it suffices to show that $F' = U \times _ X F$ is an algebraic space. We may choose an fppf covering $\{ U_ j \to U\} _{j \in J}$ where $U_ j$ is a scheme refining the fppf covering $\{ X_ i \times _ X U \to U\} _{i \in I}$, see Topologies on Spaces, Lemma 73.7.4. Thus we get a map $a : J \to I$ and for each $j$ a morphism $U_ j \to X_{a(j)}$ over $X$. Then we see that $U_ j \times _ U F' = U_ j \times _{X_{a(j)}} Y_{a(j)}$ is of finite type over $U_ j$. Hence $F'$ is an algebraic space by Lemma 80.11.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)