Lemma 74.23.1. Let $S$ be a scheme. Let $\{ X_ i \to X\} _{i \in I}$ be an fppf covering of algebraic spaces over $S$ (Topologies on Spaces, Definition 73.7.1). There is an equivalence of categories
\[ \left\{ \begin{matrix} \text{descent data }(V_ i, \varphi _{ij})
\\ \text{relative to }\{ X_ i \to X\}
\end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} \text{sheaves }F\text{ on }(\mathit{Sch}/S)_{fppf}\text{ endowed}
\\ \text{with a map }F \to X\text{ such that each}
\\ X_ i \times _ X F\text{ is an algebraic space}
\end{matrix} \right\} . \]
Moreover,
the algebraic space $X_ i \times _ X F$ on the right hand side corresponds to $V_ i$ on the left hand side, and
the sheaf $F$ is an algebraic space1 if and only if the corresponding descent datum $(X_ i, \varphi _{ij})$ is effective.
Proof.
Let us construct the functor from right to left. Let $F \to X$ be a map of sheaves on $(\mathit{Sch}/S)_{fppf}$ such that each $V_ i = X_ i \times _ X F$ is an algebraic space. We have the projection $V_ i \to X_ i$. Then both $V_ i \times _ X X_ j$ and $X_ i \times _ X V_ j$ represent the sheaf $X_ i \times _ X F \times _ X X_ j$ and hence we obtain an isomorphism
\[ \varphi _{ii'} : V_ i \times _ X X_ j \to X_ i \times _ X V_ j \]
It is straightforward to see that the maps $\varphi _{ij}$ are morphisms over $X_ i \times _ X X_ j$ and satisfy the cocycle condition. The functor from right to left is given by this construction $F \mapsto (V_ i, \varphi _{ij})$.
Let us construct a functor from left to right. The isomorphisms $\varphi _{ij}$ give isomorphisms
\[ \varphi _{ij} : V_ i \times _ X X_ j \longrightarrow X_ i \times _ X V_ j \]
over $X_ i \times X_ j$. Set $F$ equal to the coequalizer in the following diagram
\[ \xymatrix{ \coprod _{i, i'} V_ i \times _ X X_ j \ar@<1ex>[rr]^-{\text{pr}_0} \ar@<-1ex>[rr]_-{\text{pr}_1 \circ \varphi _{ij}} & & \coprod _ i V_ i \ar[r] & F } \]
The cocycle condition guarantees that $F$ comes with a map $F \to X$ and that $X_ i \times _ X F$ is isomorphic to $V_ i$. The functor from left to right is given by this construction $(V_ i, \varphi _{ij}) \mapsto F$.
We omit the verification that these constructions are mutually quasi-inverse functors. The final statements (1) and (2) follow from the constructions.
$\square$
Comments (1)
Comment #1591 by S. Carnahan on
There are also: