The Stacks project

Lemma 80.11.2. Let $S$ be a scheme. Let $F : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$ be a functor. Let $\{ S_ i \to S\} _{i \in I}$ be a covering of $(\mathit{Sch}/S)_{fppf}$. Assume that

  1. $F$ is a sheaf,

  2. each $F_ i = h_{S_ i} \times F$ is an algebraic space, and

  3. the morphisms $F_ i \to S_ i$ are of finite type.

Then $F$ is an algebraic space.

Proof. We will use Lemma 80.11.1 above. To do this we will show that the assumption that $F_ i$ is of finite type over $S_ i$ to prove that the set theoretic condition in the lemma is satisfied (after perhaps refining the given covering of $S$ a bit). We suggest the reader skip the rest of the proof.

If $S'_ i \to S_ i$ is a morphism of schemes then

\[ h_{S'_ i} \times F = h_{S'_ i} \times _{h_{S_ i}} h_{S_ i} \times F = h_{S'_ i} \times _{h_{S_ i}} F_ i \]

is an algebraic space of finite type over $S'_ i$, see Spaces, Lemma 65.7.3 and Morphisms of Spaces, Lemma 67.23.3. Thus we may refine the given covering. After doing this we may assume: (a) each $S_ i$ is affine, and (b) the cardinality of $I$ is at most the cardinality of the set of points of $S$. (Since to cover all of $S$ it is enough that each point is in the image of $S_ i \to S$ for some $i$.)

Since each $S_ i$ is affine and each $F_ i$ of finite type over $S_ i$ we conclude that $F_ i$ is quasi-compact. Hence by Properties of Spaces, Lemma 66.6.3 we can find an affine $U_ i \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ and a surjective étale morphism $U_ i \to F_ i$. The fact that $F_ i \to S_ i$ is locally of finite type then implies that $U_ i \to S_ i$ is locally of finite type, and in particular $U_ i \to S$ is locally of finite type. By Sets, Lemma 3.9.7 we conclude that $\text{size}(U_ i) \leq \text{size}(S)$. Since also $|I| \leq \text{size}(S)$ we conclude that $\coprod _{i \in I} U_ i$ is isomorphic to an object of $(\mathit{Sch}/S)_{fppf}$ by Sets, Lemma 3.9.5 and the construction of $\mathit{Sch}$. This implies that $\coprod F_ i$ is an algebraic space by Spaces, Lemma 65.8.4 and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04U0. Beware of the difference between the letter 'O' and the digit '0'.