Lemma 20.27.1. The construction above is independent of choices and defines an exact functor of triangulated categories $Lf^* : D(\mathcal{O}_ Y) \to D(\mathcal{O}_ X)$.
20.27 Derived pullback
Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. We can use K-flat resolutions to define a derived pullback functor
Namely, for every complex of $\mathcal{O}_ Y$-modules $\mathcal{G}^\bullet $ we can choose a K-flat resolution $\mathcal{K}^\bullet \to \mathcal{G}^\bullet $ and set $Lf^*\mathcal{G}^\bullet = f^*\mathcal{K}^\bullet $. You can use Lemmas 20.26.8, 20.26.12, and 20.26.13 to see that this is well defined. However, to cross all the t's and dot all the i's it is perhaps more convenient to use some general theory.
Proof. To see this we use the general theory developed in Derived Categories, Section 13.14. Set $\mathcal{D} = K(\mathcal{O}_ Y)$ and $\mathcal{D}' = D(\mathcal{O}_ X)$. Let us write $F : \mathcal{D} \to \mathcal{D}'$ the exact functor of triangulated categories defined by the rule $F(\mathcal{G}^\bullet ) = f^*\mathcal{G}^\bullet $. We let $S$ be the set of quasi-isomorphisms in $\mathcal{D} = K(\mathcal{O}_ Y)$. This gives a situation as in Derived Categories, Situation 13.14.1 so that Derived Categories, Definition 13.14.2 applies. We claim that $LF$ is everywhere defined. This follows from Derived Categories, Lemma 13.14.15 with $\mathcal{P} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ the collection of $K$-flat complexes: (1) follows from Lemma 20.26.12 and to see (2) we have to show that for a quasi-isomorphism $\mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet $ between K-flat complexes of $\mathcal{O}_ Y$-modules the map $f^*\mathcal{K}_1^\bullet \to f^*\mathcal{K}_2^\bullet $ is a quasi-isomorphism. To see this write this as
The functor $f^{-1}$ is exact, hence the map $f^{-1}\mathcal{K}_1^\bullet \to f^{-1}\mathcal{K}_2^\bullet $ is a quasi-isomorphism. By Lemma 20.26.8 applied to the morphism $(X, f^{-1}\mathcal{O}_ Y) \to (Y, \mathcal{O}_ Y)$ the complexes $f^{-1}\mathcal{K}_1^\bullet $ and $f^{-1}\mathcal{K}_2^\bullet $ are K-flat complexes of $f^{-1}\mathcal{O}_ Y$-modules. Hence Lemma 20.26.13 guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived functor
see Derived Categories, Equation (13.14.9.1). Finally, Derived Categories, Lemma 13.14.15 also guarantees that $LF(\mathcal{K}^\bullet ) = F(\mathcal{K}^\bullet ) = f^*\mathcal{K}^\bullet $ when $\mathcal{K}^\bullet $ is K-flat, i.e., $Lf^* = LF$ is indeed computed in the way described above. $\square$
Lemma 20.27.2. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of ringed spaces. Then $Lf^* \circ Lg^* = L(g \circ f)^*$ as functors $D(\mathcal{O}_ Z) \to D(\mathcal{O}_ X)$.
Proof. Let $E$ be an object of $D(\mathcal{O}_ Z)$. By construction $Lg^*E$ is computed by choosing a K-flat complex $\mathcal{K}^\bullet $ representing $E$ on $Z$ and setting $Lg^*E = g^*\mathcal{K}^\bullet $. By Lemma 20.26.8 we see that $g^*\mathcal{K}^\bullet $ is K-flat on $Y$. Then $Lf^*Lg^*E$ is given by $f^*g^*\mathcal{K}^\bullet = (g \circ f)^*\mathcal{K}^\bullet $ which also represents $L(g \circ f)^*E$. $\square$
Lemma 20.27.3. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. There is a canonical bifunctorial isomorphism for $\mathcal{F}^\bullet , \mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}_ Y))$.
Proof. We may assume that $\mathcal{F}^\bullet $ and $\mathcal{G}^\bullet $ are K-flat complexes. In this case $\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y}^{\mathbf{L}} \mathcal{G}^\bullet $ is just the total complex associated to the double complex $\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y} \mathcal{G}^\bullet $. By Lemma 20.26.5 $\text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}_ Y} \mathcal{G}^\bullet )$ is K-flat also. Hence the isomorphism of the lemma comes from the isomorphism
whose constituents are the isomorphisms $f^*\mathcal{F}^ p \otimes _{\mathcal{O}_ X} f^*\mathcal{G}^ q \to f^*(\mathcal{F}^ p \otimes _{\mathcal{O}_ Y} \mathcal{G}^ q)$ of Modules, Lemma 17.16.4. $\square$
Lemma 20.27.4. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. There is a canonical bifunctorial isomorphism for $\mathcal{F}^\bullet $ in $D(\mathcal{O}_ X)$ and $\mathcal{G}^\bullet $ in $D(\mathcal{O}_ Y)$.
Proof. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module and let $\mathcal{G}$ be an $\mathcal{O}_ Y$-module. Then $\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G} = \mathcal{F} \otimes _{f^{-1}\mathcal{O}_ Y} f^{-1}\mathcal{G}$ because $f^*\mathcal{G} = \mathcal{O}_ X \otimes _{f^{-1}\mathcal{O}_ Y} f^{-1}\mathcal{G}$. The lemma follows from this and the definitions. $\square$
Lemma 20.27.5. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. Let $\mathcal{K}^\bullet $ and $\mathcal{M}^\bullet $ be complexes of $\mathcal{O}_ Y$-modules. The diagram commutes.
Proof. We will use the existence of K-flat resolutions as in Lemma 20.26.8. If we choose such resolutions $\mathcal{P}^\bullet \to \mathcal{K}^\bullet $ and $\mathcal{Q}^\bullet \to \mathcal{M}^\bullet $, then we see that
commutes. However, now the left hand side of the diagram is the left hand side of the diagram by our choice of $\mathcal{P}^\bullet $ and $\mathcal{Q}^\bullet $ and Lemma 20.26.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7936 by Karl Schwede on
Comment #8178 by Aise Johan de Jong on