Lemma 13.14.15. Assumptions and notation as in Situation 13.14.1. If there exists a subset $\mathcal{I} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ such that
for all $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ there exists $s : X \to X'$ in $S$ with $X' \in \mathcal{I}$, and
for every arrow $s : X \to X'$ in $S$ with $X, X' \in \mathcal{I}$ the map $F(s) : F(X) \to F(X')$ is an isomorphism,
then $RF$ is everywhere defined and every $X \in \mathcal{I}$ computes $RF$. Dually, if there exists a subset $\mathcal{P} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ such that
for all $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ there exists $s : X' \to X$ in $S$ with $X' \in \mathcal{P}$, and
for every arrow $s : X \to X'$ in $S$ with $X, X' \in \mathcal{P}$ the map $F(s) : F(X) \to F(X')$ is an isomorphism,
then $LF$ is everywhere defined and every $X \in \mathcal{P}$ computes $LF$.
Comments (0)
There are also: