Lemma 20.26.8. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. The pullback of a K-flat complex of $\mathcal{O}_ Y$-modules is a K-flat complex of $\mathcal{O}_ X$-modules.
Proof. We can check this on stalks, see Lemma 20.26.4. Hence this follows from Sheaves, Lemma 6.26.4 and More on Algebra, Lemma 15.59.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)