Lemma 20.26.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{G}^\bullet $ be a complex of $\mathcal{O}_ X$-modules. The functors
and
are exact functors of triangulated categories.
A reference for the material in this section is [Spaltenstein]. Let $(X, \mathcal{O}_ X)$ be a ringed space. By Modules, Lemma 17.17.6 any $\mathcal{O}_ X$-module is a quotient of a flat $\mathcal{O}_ X$-module. By Derived Categories, Lemma 13.15.4 any bounded above complex of $\mathcal{O}_ X$-modules has a left resolution by a bounded above complex of flat $\mathcal{O}_ X$-modules. However, for unbounded complexes, it turns out that flat resolutions aren't good enough.
Lemma 20.26.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{G}^\bullet $ be a complex of $\mathcal{O}_ X$-modules. The functors and are exact functors of triangulated categories.
Proof. This follows from Derived Categories, Remark 13.10.9. $\square$
Definition 20.26.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. A complex $\mathcal{K}^\bullet $ of $\mathcal{O}_ X$-modules is called K-flat if for every acyclic complex $\mathcal{F}^\bullet $ of $\mathcal{O}_ X$-modules the complex is acyclic.
Lemma 20.26.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{K}^\bullet $ be a K-flat complex. Then the functor transforms quasi-isomorphisms into quasi-isomorphisms.
Proof. Follows from Lemma 20.26.1 and the fact that quasi-isomorphisms are characterized by having acyclic cones. $\square$
Lemma 20.26.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{K}^\bullet $ be a complex of $\mathcal{O}_ X$-modules. Then $\mathcal{K}^\bullet $ is K-flat if and only if for all $x \in X$ the complex $\mathcal{K}_ x^\bullet $ of $\mathcal{O}_{X, x}$-modules is K-flat (More on Algebra, Definition 15.59.1).
Proof. If $\mathcal{K}_ x^\bullet $ is K-flat for all $x \in X$ then we see that $\mathcal{K}^\bullet $ is K-flat because $\otimes $ and direct sums commute with taking stalks and because we can check exactness at stalks, see Modules, Lemma 17.3.1. Conversely, assume $\mathcal{K}^\bullet $ is K-flat. Pick $x \in X$ and let $M^\bullet $ be an acyclic complex of $\mathcal{O}_{X, x}$-modules. Then $i_{x, *}M^\bullet $ is an acyclic complex of $\mathcal{O}_ X$-modules. Thus $\text{Tot}(i_{x, *}M^\bullet \otimes _{\mathcal{O}_ X} \mathcal{K}^\bullet )$ is acyclic. Taking stalks at $x$ shows that $\text{Tot}(M^\bullet \otimes _{\mathcal{O}_{X, x}} \mathcal{K}_ x^\bullet )$ is acyclic. $\square$
Lemma 20.26.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. If $\mathcal{K}^\bullet $, $\mathcal{L}^\bullet $ are K-flat complexes of $\mathcal{O}_ X$-modules, then $\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet )$ is a K-flat complex of $\mathcal{O}_ X$-modules.
Proof. Follows from the isomorphism
and the definition. $\square$
Lemma 20.26.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $(\mathcal{K}_1^\bullet , \mathcal{K}_2^\bullet , \mathcal{K}_3^\bullet )$ be a distinguished triangle in $K(\textit{Mod}(\mathcal{O}_ X))$. If two out of three of $\mathcal{K}_ i^\bullet $ are K-flat, so is the third.
Proof. Follows from Lemma 20.26.1 and the fact that in a distinguished triangle in $K(\textit{Mod}(\mathcal{O}_ X))$ if two out of three are acyclic, so is the third. $\square$
Lemma 20.26.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $0 \to \mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet \to \mathcal{K}_3^\bullet \to 0$ be a short exact sequence of complexes such that the terms of $\mathcal{K}_3^\bullet $ are flat $\mathcal{O}_ X$-modules. If two out of three of $\mathcal{K}_ i^\bullet $ are K-flat, so is the third.
Proof. By Modules, Lemma 17.17.7 for every complex $\mathcal{L}^\bullet $ we obtain a short exact sequence
of complexes. Hence the lemma follows from the long exact sequence of cohomology sheaves and the definition of K-flat complexes. $\square$
Lemma 20.26.8. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. The pullback of a K-flat complex of $\mathcal{O}_ Y$-modules is a K-flat complex of $\mathcal{O}_ X$-modules.
Proof. We can check this on stalks, see Lemma 20.26.4. Hence this follows from Sheaves, Lemma 6.26.4 and More on Algebra, Lemma 15.59.3. $\square$
Lemma 20.26.9. Let $(X, \mathcal{O}_ X)$ be a ringed space. A bounded above complex of flat $\mathcal{O}_ X$-modules is K-flat.
Proof. We can check this on stalks, see Lemma 20.26.4. Thus this lemma follows from Modules, Lemma 17.17.2 and More on Algebra, Lemma 15.59.7. $\square$
In the following lemma by a colimit of a system of complexes we mean the termwise colimit.
Lemma 20.26.10. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet \to \ldots $ be a system of K-flat complexes. Then $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{K}_ i^\bullet $ is K-flat.
Proof. Because we are taking termwise colimits it is clear that
Hence the lemma follows from the fact that filtered colimits are exact. $\square$
Lemma 20.26.11. Let $(X, \mathcal{O}_ X)$ be a ringed space. For any complex $\mathcal{G}^\bullet $ of $\mathcal{O}_ X$-modules there exists a commutative diagram of complexes of $\mathcal{O}_ X$-modules with the following properties: (1) the vertical arrows are quasi-isomorphisms and termwise surjective, (2) each $\mathcal{K}_ n^\bullet $ is a bounded above complex whose terms are direct sums of $\mathcal{O}_ X$-modules of the form $j_{U!}\mathcal{O}_ U$, and (3) the maps $\mathcal{K}_ n^\bullet \to \mathcal{K}_{n + 1}^\bullet $ are termwise split injections whose cokernels are direct sums of $\mathcal{O}_ X$-modules of the form $j_{U!}\mathcal{O}_ U$. Moreover, the map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism.
Proof. The existence of the diagram and properties (1), (2), (3) follows immediately from Modules, Lemma 17.17.6 and Derived Categories, Lemma 13.29.1. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism because filtered colimits are exact. $\square$
Lemma 20.26.12. Let $(X, \mathcal{O}_ X)$ be a ringed space. For any complex $\mathcal{G}^\bullet $ there exists a $K$-flat complex $\mathcal{K}^\bullet $ whose terms are flat $\mathcal{O}_ X$-modules and a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{G}^\bullet $ which is termwise surjective.
Proof. Choose a diagram as in Lemma 20.26.11. Each complex $\mathcal{K}_ n^\bullet $ is a bounded above complex of flat modules, see Modules, Lemma 17.17.5. Hence $\mathcal{K}_ n^\bullet $ is K-flat by Lemma 20.26.9. Thus $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet $ is K-flat by Lemma 20.26.10. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism and termwise surjective by construction. Property (3) of Lemma 20.26.11 shows that $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^ m$ is a direct sum of flat modules and hence flat which proves the final assertion. $\square$
Lemma 20.26.13. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\alpha : \mathcal{P}^\bullet \to \mathcal{Q}^\bullet $ be a quasi-isomorphism of K-flat complexes of $\mathcal{O}_ X$-modules. For every complex $\mathcal{F}^\bullet $ of $\mathcal{O}_ X$-modules the induced map is a quasi-isomorphism.
Proof. Choose a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{F}^\bullet $ with $\mathcal{K}^\bullet $ a K-flat complex, see Lemma 20.26.12. Consider the commutative diagram
The result follows as by Lemma 20.26.3 the vertical arrows and the top horizontal arrow are quasi-isomorphisms. $\square$
Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}^\bullet $ be an object of $D(\mathcal{O}_ X)$. Choose a K-flat resolution $\mathcal{K}^\bullet \to \mathcal{F}^\bullet $, see Lemma 20.26.12. By Lemma 20.26.1 we obtain an exact functor of triangulated categories
By Lemma 20.26.3 this functor induces a functor $D(\mathcal{O}_ X) \to D(\mathcal{O}_ X)$ simply because $D(\mathcal{O}_ X)$ is the localization of $K(\mathcal{O}_ X)$ at quasi-isomorphisms. By Lemma 20.26.13 the resulting functor (up to isomorphism) does not depend on the choice of the K-flat resolution.
Definition 20.26.14. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}^\bullet $ be an object of $D(\mathcal{O}_ X)$. The derived tensor product is the exact functor of triangulated categories described above.
It is clear from our explicit constructions that there is a canonical isomorphism
for $\mathcal{G}^\bullet $ and $\mathcal{F}^\bullet $ in $D(\mathcal{O}_ X)$. Here we use sign rules as given in More on Algebra, Section 15.72. Hence when we write $\mathcal{F}^\bullet \otimes _{\mathcal{O}_ X}^{\mathbf{L}} \mathcal{G}^\bullet $ we will usually be agnostic about which variable we are using to define the derived tensor product with.
Definition 20.26.15. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}_ X$-modules. The Tor's of $\mathcal{F}$ and $\mathcal{G}$ are define by the formula with derived tensor product as defined above.
This definition implies that for every short exact sequence of $\mathcal{O}_ X$-modules $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ we have a long exact cohomology sequence
for every $\mathcal{O}_ X$-module $\mathcal{G}$. This will be called the long exact sequence of $\text{Tor}$ associated to the situation.
Lemma 20.26.16. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. The following are equivalent
$\mathcal{F}$ is a flat $\mathcal{O}_ X$-module, and
$\text{Tor}_1^{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) = 0$ for every $\mathcal{O}_ X$-module $\mathcal{G}$.
Proof. If $\mathcal{F}$ is flat, then $\mathcal{F} \otimes _{\mathcal{O}_ X} -$ is an exact functor and the satellites vanish. Conversely assume (2) holds. Then if $\mathcal{G} \to \mathcal{H}$ is injective with cokernel $\mathcal{Q}$, the long exact sequence of $\text{Tor}$ shows that the kernel of $\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G} \to \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{H}$ is a quotient of $\text{Tor}_1^{\mathcal{O}_ X}(\mathcal{F}, \mathcal{Q})$ which is zero by assumption. Hence $\mathcal{F}$ is flat. $\square$
Lemma 20.26.17. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $a : \mathcal{K}^\bullet \to \mathcal{L}^\bullet $ be a map of complexes of $\mathcal{O}_ X$-modules. If $\mathcal{K}^\bullet $ is K-flat, then there exist a complex $\mathcal{N}^\bullet $ and maps of complexes $b : \mathcal{K}^\bullet \to \mathcal{N}^\bullet $ and $c : \mathcal{N}^\bullet \to \mathcal{L}^\bullet $ such that
$\mathcal{N}^\bullet $ is K-flat,
$c$ is a quasi-isomorphism,
$a$ is homotopic to $c \circ b$.
If the terms of $\mathcal{K}^\bullet $ are flat, then we may choose $\mathcal{N}^\bullet $, $b$, and $c$ such that the same is true for $\mathcal{N}^\bullet $.
Proof. We will use that the homotopy category $K(\textit{Mod}(\mathcal{O}_ X))$ is a triangulated category, see Derived Categories, Proposition 13.10.3. Choose a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{L}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet [1]$. Choose a quasi-isomorphism $\mathcal{M}^\bullet \to \mathcal{C}^\bullet $ with $\mathcal{M}^\bullet $ K-flat with flat terms, see Lemma 20.26.12. By the axioms of triangulated categories, we may fit the composition $\mathcal{M}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet [1]$ into a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{N}^\bullet \to \mathcal{M}^\bullet \to \mathcal{K}^\bullet [1]$. By Lemma 20.26.6 we see that $\mathcal{N}^\bullet $ is K-flat. Again using the axioms of triangulated categories, we can choose a map $\mathcal{N}^\bullet \to \mathcal{L}^\bullet $ fitting into the following morphism of distinghuised triangles
Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow $\mathcal{N}^\bullet \to \mathcal{L}^\bullet $ by the long exact sequences of cohomology associated to these distinguished triangles (or you can look at the image of this diagram in $D(\mathcal{O}_ X)$ and use Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final assertion, we may choose $\mathcal{N}^\bullet $ such that $\mathcal{N}^ n \cong \mathcal{M}^ n \oplus \mathcal{K}^ n$, see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the terms of $\mathcal{K}^\bullet $ are flat. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)