Definition 20.26.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. A complex $\mathcal{K}^\bullet $ of $\mathcal{O}_ X$-modules is called K-flat if for every acyclic complex $\mathcal{F}^\bullet $ of $\mathcal{O}_ X$-modules the complex
\[ \text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{K}^\bullet ) \]
is acyclic.
Comments (0)