Lemma 94.10.10. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $j : \mathcal X \to \mathcal Y$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Assume $j$ is representable by algebraic spaces and a monomorphism (see Definition 94.10.1 and Descent on Spaces, Lemma 74.11.30). Then $j$ is fully faithful on fibre categories.
Proof. We have seen in Lemma 94.9.2 that $j$ is faithful on fibre categories. Consider a scheme $U$, two objects $u, v$ of $\mathcal{X}_ U$, and an isomorphism $t : j(u) \to j(v)$ in $\mathcal{Y}_ U$. We have to construct an isomorphism in $\mathcal{X}_ U$ between $u$ and $v$. By the $2$-Yoneda lemma (see Section 94.5) we think of $u$, $v$ as $1$-morphisms $u, v : (\mathit{Sch}/U)_{fppf} \to \mathcal{X}$ and we consider the $2$-fibre product
By assumption this is representable by an algebraic space $F_{j \circ v}$, over $U$ and the morphism $F_{j \circ v} \to U$ is a monomorphism. But since $(1_ U, v, 1_{j(v)})$ gives a $1$-morphism of $(\mathit{Sch}/U)_{fppf}$ into the displayed $2$-fibre product, we see that $F_{j \circ v} = U$ (here we use that if $V \to U$ is a monomorphism of algebraic spaces which has a section, then $V = U$). Therefore the $1$-morphism projecting to the first coordinate
is an equivalence of fibre categories. Since $(1_ U, u, t)$ and $(1_ U, v, 1_{j(v)})$ give two objects in $((\mathit{Sch}/U)_{fppf} \times _{j \circ v, \mathcal{Y}} \mathcal{X})_ U$ which have the same first coordinate, there must be a $2$-morphism between them in the $2$-fibre product. This is by definition a morphism $\tilde t : u \to v$ such that $j(\tilde t) = t$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7464 by Anonymous on
Comment #7615 by Stacks Project on