Lemma 94.10.9. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$, $\mathcal{Y}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism representable by algebraic spaces. Let $\mathcal{P}$, $\mathcal{P}'$ be properties as in Definition 94.10.1. Suppose that for any morphism of algebraic spaces $a : F \to G$ we have $\mathcal{P}(a) \Rightarrow \mathcal{P}'(a)$. If $f$ has property $\mathcal{P}$ then $f$ has property $\mathcal{P}'$.
Proof. Formal. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)