Lemma 94.10.11. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. The following are equivalent:
the diagonal $\mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is representable by algebraic spaces,
for every scheme $U$ over $S$, and any $x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U)$ the sheaf $\mathit{Isom}(x, y)$ is an algebraic space over $U$,
for every scheme $U$ over $S$, and any $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U)$ the associated $1$-morphism $x : (\mathit{Sch}/U)_{fppf} \to \mathcal{X}$ is representable by algebraic spaces,
for every pair of schemes $T_1, T_2$ over $S$, and any $x_ i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_{T_ i})$, $i = 1, 2$ the $2$-fibre product $(\mathit{Sch}/T_1)_{fppf} \times _{x_1, \mathcal{X}, x_2} (\mathit{Sch}/T_2)_{fppf}$ is representable by an algebraic space,
for every representable category fibred in groupoids $\mathcal{U}$ over $(\mathit{Sch}/S)_{fppf}$ every $1$-morphism $\mathcal{U} \to \mathcal{X}$ is representable by algebraic spaces,
for every pair $\mathcal{T}_1, \mathcal{T}_2$ of representable categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ and any $1$-morphisms $x_ i : \mathcal{T}_ i \to \mathcal{X}$, $i = 1, 2$ the $2$-fibre product $\mathcal{T}_1 \times _{x_1, \mathcal{X}, x_2} \mathcal{T}_2$ is representable by an algebraic space,
for every category fibred in groupoids $\mathcal{U}$ over $(\mathit{Sch}/S)_{fppf}$ which is representable by an algebraic space every $1$-morphism $\mathcal{U} \to \mathcal{X}$ is representable by algebraic spaces,
for every pair $\mathcal{T}_1, \mathcal{T}_2$ of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ which are representable by algebraic spaces, and any $1$-morphisms $x_ i : \mathcal{T}_ i \to \mathcal{X}$ the $2$-fibre product $\mathcal{T}_1 \times _{x_1, \mathcal{X}, x_2} \mathcal{T}_2$ is representable by an algebraic space.
Comments (0)