The Stacks project

18.27 Internal Hom

Let $\mathcal{C}$ be a category and let $\mathcal{O}$ be a presheaf of rings. Let $\mathcal{F}$, $\mathcal{G}$ be presheaves of $\mathcal{O}$-modules. Consider the rule

\[ U \longmapsto \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathcal{G}|_ U). \]

For $\varphi : V \to U$ in $\mathcal{C}$ we define a restriction mapping

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathcal{G}|_ U) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ V}(\mathcal{F}|_ V, \mathcal{G}|_ V) \]

by restricting via the relocalization morphism $j : \mathcal{C}/V \to \mathcal{C}/U$, see Sites, Lemma 7.25.8. Hence this defines a presheaf $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$. In addition, given an element $\varphi \in \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}|_ U}(\mathcal{F}|_ U, \mathcal{G}|_ U)$ and a section $f \in \mathcal{O}(U)$ then we can define $f\varphi \in \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}|_ U}(\mathcal{F}|_ U, \mathcal{G}|_ U)$ by either precomposing with multiplication by $f$ on $\mathcal{F}|_ U$ or postcomposing with multiplication by $f$ on $\mathcal{G}|_ U$ (it gives the same result). Hence we in fact get a presheaf of $\mathcal{O}$-modules. There is a canonical “evaluation” morphism

\[ \mathcal{F} \otimes _{p, \mathcal{O}} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathcal{G}. \]

Lemma 18.27.1. If $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, $\mathcal{F}$ is a presheaf of $\mathcal{O}$-modules, and $\mathcal{G}$ is a sheaf of $\mathcal{O}$-modules, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ is a sheaf of $\mathcal{O}$-modules.

Proof. Omitted. Hints: Note first that $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}^\# , \mathcal{G})$, which reduces the question to the case where both $\mathcal{F}$ and $\mathcal{G}$ are sheaves. The result for sheaves of sets is Sites, Lemma 7.26.1. $\square$

Lemma 18.27.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}, \mathcal{G}$ be sheaves of $\mathcal{O}$-modules. Then formation of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ commutes with restriction to $U$ for $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.

Proof. Immediate from the definition. $\square$

Remark 18.27.3. Let $f : (\mathcal{C}, \mathcal{O}_\mathcal {C}) \to (\mathcal{D}, \mathcal{O}_\mathcal {D})$ be a morphism of ringed sites. Let $\mathcal{F}, \mathcal{G}$ be sheaves of $\mathcal{O}_\mathcal {D}$-modules. There is a canonical map

\[ f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G}) \]

Namely, this map is adjoint to the map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G}) \longrightarrow f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G}) \]

defined as follows. Say $f$ is given by the continuous functor $u : \mathcal{D} \to \mathcal{C}$. For sections over $V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ we use the map

\begin{align*} \Gamma (V, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G})) & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ V}(\mathcal{F}|_ V, \mathcal{G}|_ V) \\ & \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{u(V)}}(f^*\mathcal{F}|_{u(V)}, \mathcal{G}|_{u(V)}) \\ & = \Gamma (u(V), \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G})) \\ & = \Gamma (V, f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G})) \end{align*}

where for the arrow we use pullback by the morphism $(\mathcal{C}/u(V), \mathcal{O}_{u(V)}) \to (\mathcal{D}/V, \mathcal{O}_ V)$ induced by $f$.

In the situation of Lemma 18.27.1 the “evaluation” morphism factors through the tensor product of sheaves of modules

\[ \mathcal{F} \otimes _\mathcal {O} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathcal{G}. \]

Lemma 18.27.4. Internal hom and (co)limits. Let $\mathcal{C}$ be a category and let $\mathcal{O}$ be a presheaf of rings.

  1. For any presheaf of $\mathcal{O}$-modules $\mathcal{F}$ the functor

    \[ \textit{PMod}(\mathcal{O}) \longrightarrow \textit{PMod}(\mathcal{O}) , \quad \mathcal{G} \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

    commutes with arbitrary limits.

  2. For any presheaf of $\mathcal{O}$-modules $\mathcal{G}$ the functor

    \[ \textit{PMod}(\mathcal{O}) \longrightarrow \textit{PMod}(\mathcal{O})^{opp} , \quad \mathcal{F} \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

    commutes with arbitrary colimits, in a formula

    \[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i, \mathcal{G}) = \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}_ i, \mathcal{G}). \]

Suppose that $\mathcal{C}$ is a site, and $\mathcal{O}$ is a sheaf of rings.

  1. For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ the functor

    \[ \textit{Mod}(\mathcal{O}) \longrightarrow \textit{Mod}(\mathcal{O}) , \quad \mathcal{G} \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

    commutes with arbitrary limits.

  2. For any sheaf of $\mathcal{O}$-modules $\mathcal{G}$ the functor

    \[ \textit{Mod}(\mathcal{O}) \longrightarrow \textit{Mod}(\mathcal{O})^{opp} , \quad \mathcal{F} \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

    commutes with arbitrary colimits, in a formula

    \[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i, \mathcal{G}) = \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}_ i, \mathcal{G}). \]

Proof. Let $\mathcal{I} \to \textit{PMod}(\mathcal{O})$, $i \mapsto \mathcal{G}_ i$ be a diagram. Let $U$ be an object of the category $\mathcal{C}$. As $j_ U^*$ is both a left and a right adjoint we see that $\mathop{\mathrm{lim}}\nolimits _ i j_ U^*\mathcal{G}_ i = j_ U^* \mathop{\mathrm{lim}}\nolimits _ i \mathcal{G}_ i$. Hence we have

\begin{align*} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathop{\mathrm{lim}}\nolimits _ i \mathcal{G}_ i)(U) & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathop{\mathrm{lim}}\nolimits _ i \mathcal{G}_ i|_ U) \\ & = \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathcal{G}_ i|_ U) \\ & = \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_ i)(U) \end{align*}

by definition of a limit. This proves (1). Part (2) is proved in exactly the same way. Part (3) follows from (1) because the limit of a diagram of sheaves is the same as the limit in the category of presheaves. Finally, (4) follow because, in the formula we have

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i, \mathcal{G}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathop{\mathrm{colim}}\nolimits ^{PSh}_ i \mathcal{F}_ i, \mathcal{G}) \]

as the colimit $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ is the sheafification of the colimit $\mathop{\mathrm{colim}}\nolimits ^{PSh}_ i \mathcal{F}_ i$ in $\textit{PMod}(\mathcal{O})$. Hence (4) follows from (2) (by the remark on limits above again). $\square$

Lemma 18.27.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}$-modules.

  1. If $\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0$ is an exact sequence of $\mathcal{O}$-modules, then

    \[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}_1, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}_2, \mathcal{G}) \]

    is exact.

  2. If $0 \to \mathcal{G} \to \mathcal{G}_1 \to \mathcal{G}_2$ is an exact sequence of $\mathcal{O}$-modules, then

    \[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_1) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_2) \]

    is exact.

Proof. Follows from Lemma 18.27.4 and Homology, Lemma 12.7.2. $\square$

Lemma 18.27.6. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings.

  1. Let $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ be presheaves of $\mathcal{O}$-modules. There is a canonical isomorphism

    \[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]

    which is functorial in all three entries (sheaf Hom in all three spots). In particular,

    \[ \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G}, \mathcal{H}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]
  2. Suppose that $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, and $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ are sheaves of $\mathcal{O}$-modules. There is a canonical isomorphism

    \[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F} \otimes _\mathcal {O} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]

    which is functorial in all three entries (sheaf Hom in all three spots). In particular,

    \[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{F} \otimes _\mathcal {O} \mathcal{G}, \mathcal{H}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]

Proof. This is the analogue of Algebra, Lemma 10.12.8. The proof is the same, and is omitted. $\square$

Lemma 18.27.7. Tensor product and colimits. Let $\mathcal{C}$ be a category and let $\mathcal{O}$ be a presheaf of rings.

  1. For any presheaf of $\mathcal{O}$-modules $\mathcal{F}$ the functor

    \[ \textit{PMod}(\mathcal{O}) \longrightarrow \textit{PMod}(\mathcal{O}) , \quad \mathcal{G} \longmapsto \mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G} \]

    commutes with arbitrary colimits.

  2. Suppose that $\mathcal{C}$ is a site, and $\mathcal{O}$ is a sheaf of rings. For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ the functor

    \[ \textit{Mod}(\mathcal{O}) \longrightarrow \textit{Mod}(\mathcal{O}) , \quad \mathcal{G} \longmapsto \mathcal{F} \otimes _\mathcal {O} \mathcal{G} \]

    commutes with arbitrary colimits.

Proof. This is because tensor product is adjoint to internal hom according to Lemma 18.27.6. See Categories, Lemma 4.24.5. $\square$

Lemma 18.27.8. Let $\mathcal{C}$ be a category, resp. a site Let $\mathcal{O} \to \mathcal{O}'$ be a map of presheaves, resp. sheaves of rings. Then

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}', \mathcal{F})) \]

for any $\mathcal{O}'$-module $\mathcal{G}$ and $\mathcal{O}$-module $\mathcal{F}$.

Proof. This is the analogue of Algebra, Lemma 10.14.4. The proof is the same, and is omitted. $\square$

Lemma 18.27.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. For $\mathcal{G}$ in $\textit{Mod}(\mathcal{O}_ U)$ and $\mathcal{F}$ in $\textit{Mod}(\mathcal{O})$ we have $j_{U!}\mathcal{G} \otimes _\mathcal {O} \mathcal{F} = j_{U!}(\mathcal{G} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U)$.

Proof. Let $\mathcal{H}$ be an object of $\textit{Mod}(\mathcal{O})$. Then

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_{U!}(\mathcal{G} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U), \mathcal{H}) & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U, \mathcal{H}|_ U) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathcal{H}|_ U)) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{H})|_ U) \\ & = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_{U!}\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{H})) \\ & = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_{U!}\mathcal{G} \otimes _\mathcal {O} \mathcal{F}, \mathcal{H}) \end{align*}

The first equality because $j_{U!}$ is a left adjoint to restriction of modules. The second by Lemma 18.27.6. The third by Lemma 18.27.2. The fourth because $j_{U!}$ is a left adjoint to restriction of modules. The fifth by Lemma 18.27.6. The lemma follows from this and the Yoneda lemma. $\square$

Remark 18.27.10. Let $\mathcal{C}$ be a site. Let $\mathcal{F}$ be a sheaf of sets on $\mathcal{C}$ and consider the localization morphism $j : \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$. See Sites, Definition 7.30.4. We claim that (a) $j_!\mathbf{Z} = \mathbf{Z}_\mathcal {F}^\# $ and (b) $j_!(j^{-1}\mathcal{H}) = j_!\mathbf{Z} \otimes _\mathbf {Z} \mathcal{H}$ for any abelian sheaf $\mathcal{H}$ on $\mathcal{C}$. Let $\mathcal{G}$ be an abelian on $\mathcal{C}$. Part (a) follows from the Yoneda lemma because

\[ \mathop{\mathrm{Hom}}\nolimits (j_!\mathbf{Z}, \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, j^{-1}\mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}_\mathcal {F}^\# , \mathcal{G}) \]

where the second equality holds because both sides of the equality evaluate to the set of maps from $\mathcal{F} \to \mathcal{G}$ viewed as an abelian group. For (b) we use the Yoneda lemma and

\begin{align*} \mathop{\mathrm{Hom}}\nolimits (j_!(j^{-1}\mathcal{H}), \mathcal{G}) & = \mathop{\mathrm{Hom}}\nolimits (j^{-1}\mathcal{H}, j^{-1}\mathcal{G}) \\ & = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (j^{-1}\mathcal{H}, j^{-1}\mathcal{G})) \\ & = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, j^{-1}\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{H}, \mathcal{G})) \\ & = \mathop{\mathrm{Hom}}\nolimits (j_!\mathbf{Z}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{H}, \mathcal{G})) \\ & = \mathop{\mathrm{Hom}}\nolimits (j_!\mathbf{Z} \otimes _\mathbf {Z} \mathcal{H}, \mathcal{G}) \end{align*}

Here we use adjunction, the fact that taking $\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ commutes with localization, and Lemma 18.27.6.

Lemma 18.27.11. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be an $\mathcal{O}$-module of finite presentation. Let $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits _{\lambda \in \Lambda } \mathcal{G}_\lambda $ be a filtered colimit of $\mathcal{O}$-modules. Then the canonical map

\[ \mathop{\mathrm{colim}}\nolimits _\lambda \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

is an isomorphism.

Proof. It suffices to show the arrow is an isomorphism after restriction to $U$ for all $U$ in $\mathcal{C}$. Both taking colimits of sheaves of modules and taking internal hom commute with restriction to $U$. See for example Lemmas 18.14.3 and 18.27.2. Fix $U$. Given a covering $\{ U_ i \to U\} _{i \in I}$, then it suffices to prove the restriction to each $U_ i$ is an isomorphism. Hence we may assume $\mathcal{F}$ has a global presentation

\[ \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{O} \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{O} \to \mathcal{F} \to 0 \]

The functor $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(-, -)$ commutes with finite direct sums in either variable and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}, -)$ is the identity functor. By this and by Lemma 18.27.5 we obtain an exact sequence

\[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \to \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G} \to \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G} \]

Since filtered colimits are exact in $\textit{Mod}(\mathcal{O})$ by Lemma 18.14.2 also the top row in the following commutative diagram is exact

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{colim}}\nolimits _\lambda \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda ) \ar[r] \ar[d] & \mathop{\mathrm{colim}}\nolimits _\lambda \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G}_\lambda \ar[r] \ar[d] & \mathop{\mathrm{colim}}\nolimits _\lambda \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G}_\lambda \ar[d] \\ 0 \ar[r] & \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \ar[r] & \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G} \ar[r] & \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G} } \]

Since the right two vertical arrows are isomorphisms we conclude. $\square$

Lemma 18.27.12. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits _{\lambda \in \Lambda } \mathcal{G}_\lambda $ be a filtered colimit of $\mathcal{O}$-modules. Let $\mathcal{F}$ be an $\mathcal{O}$-module of finite presentation. Then we have

\[ \mathop{\mathrm{colim}}\nolimits _\lambda \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda ) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}). \]

if the hypotheses of Sites, Lemma 7.17.8 part (4) are satisfied for the site $\mathcal{C}$; please see Sites, Remark 7.17.9.

Proof. Set $\mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathop{\mathrm{colim}}\nolimits \mathcal{G}_\lambda )$ and $\mathcal{H}_\lambda = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda )$. Recall that

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = \Gamma (\mathcal{C}, \mathcal{H}) \quad \text{and}\quad \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda ) = \Gamma (\mathcal{C}, \mathcal{H}_\lambda ) \]

by construction. By Lemma 18.27.11 we have $\mathcal{H} = \mathop{\mathrm{colim}}\nolimits \mathcal{H}_\lambda $. Thus the lemma follows from Sites, Lemma 7.17.8. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04TT. Beware of the difference between the letter 'O' and the digit '0'.