Lemma 18.14.2. Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be a ringed topos. All limits and colimits exist in $\textit{Mod}(\mathcal{O})$ and the forgetful functor $\textit{Mod}(\mathcal{O}) \to \textit{Ab}(\mathcal{C})$ commutes with them. Moreover, filtered colimits are exact.
Proof. The final statement follows from the first as filtered colimits are exact in $\textit{Ab}(\mathcal{C})$ by Lemma 18.3.2. Let $\mathcal{I} \to \textit{Mod}(\mathcal{C})$, $i \mapsto \mathcal{F}_ i$ be a diagram. Let $\mathop{\mathrm{lim}}\nolimits _ i \mathcal{F}_ i$ be the limit of the diagram in $\textit{Ab}(\mathcal{C})$. By the description of this limit in Lemma 18.3.2 we see immediately that there exists a multiplication
which turns $\mathop{\mathrm{lim}}\nolimits _ i \mathcal{F}_ i$ into a sheaf of $\mathcal{O}$-modules. It is easy to see that this is the limit of the diagram in $\textit{Mod}(\mathcal{C})$. Let $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ be the colimit of the diagram in $\textit{PAb}(\mathcal{C})$. By the description of this colimit in the proof of Lemma 18.2.1 we see immediately that there exists a multiplication
which turns $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ into a presheaf of $\mathcal{O}$-modules. Applying sheafification we get a sheaf of $\mathcal{O}$-modules $(\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i)^\# $, see Lemma 18.11.1. It is easy to see that $(\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i)^\# $ is the colimit of the diagram in $\textit{Mod}(\mathcal{O})$, and by Lemma 18.3.2 forgetting the $\mathcal{O}$-module structure is the colimit in $\textit{Ab}(\mathcal{C})$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)