Lemma 18.27.1. If $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, $\mathcal{F}$ is a presheaf of $\mathcal{O}$-modules, and $\mathcal{G}$ is a sheaf of $\mathcal{O}$-modules, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ is a sheaf of $\mathcal{O}$-modules.
Proof. Omitted. Hints: Note first that $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}^\# , \mathcal{G})$, which reduces the question to the case where both $\mathcal{F}$ and $\mathcal{G}$ are sheaves. The result for sheaves of sets is Sites, Lemma 7.26.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)