The Stacks project

Lemma 42.15.2. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$, $Y$ be locally of finite type over $S$. Let $f : X \to Y$ be a finite locally free morphism of degree $d$ (see Morphisms, Definition 29.48.1). Then $f$ is both proper and flat of relative dimension $0$, and

\[ f_*f^*\alpha = d\alpha \]

for every $\alpha \in Z_ k(Y)$.

Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma 29.48.2, and a finite morphism is proper by Morphisms, Lemma 29.44.11. We omit showing that a finite morphism has relative dimension $0$. Thus the formula makes sense. To prove it, let $Z \subset Y$ be an integral closed subscheme of $\delta $-dimension $k$. It suffices to prove the formula for $\alpha = [Z]$. Since the base change of a finite locally free morphism is finite locally free (Morphisms, Lemma 29.48.4) we see that $f_*f^*\mathcal{O}_ Z$ is a finite locally free sheaf of rank $d$ on $Z$. Hence

\[ f_*f^*[Z] = f_*f^*[\mathcal{O}_ Z]_ k = [f_*f^*\mathcal{O}_ Z]_ k = d[Z] \]

where we have used Lemmas 42.14.4 and 42.12.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02RH. Beware of the difference between the letter 'O' and the digit '0'.