Lemma 42.15.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let
\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]
be a fibre product diagram of schemes locally of finite type over $S$. Assume $f : X \to Y$ proper and $g : Y' \to Y$ flat of relative dimension $r$. Then also $f'$ is proper and $g'$ is flat of relative dimension $r$. For any $k$-cycle $\alpha $ on $X$ we have
\[ g^*f_*\alpha = f'_*(g')^*\alpha \]
in $Z_{k + r}(Y')$.
Proof.
The assertion that $f'$ is proper follows from Morphisms, Lemma 29.41.5. The assertion that $g'$ is flat of relative dimension $r$ follows from Morphisms, Lemmas 29.29.2 and 29.25.8. It suffices to prove the equality of cycles when $\alpha = [W]$ for some integral closed subscheme $W \subset X$ of $\delta $-dimension $k$. Note that in this case we have $\alpha = [\mathcal{O}_ W]_ k$, see Lemma 42.10.3. By Lemmas 42.12.4 and 42.14.4 it therefore suffices to show that $f'_*(g')^*\mathcal{O}_ W$ is isomorphic to $g^*f_*\mathcal{O}_ W$. This follows from cohomology and base change, see Cohomology of Schemes, Lemma 30.5.2.
$\square$
Comments (0)