Definition 29.48.1. Let $f : X \to S$ be a morphism of schemes. We say $f$ is finite locally free if $f$ is affine and $f_*\mathcal{O}_ X$ is a finite locally free $\mathcal{O}_ S$-module. In this case we say $f$ is has rank or degree $d$ if the sheaf $f_*\mathcal{O}_ X$ is finite locally free of degree $d$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)