The Stacks project

Lemma 42.68.44. Let $R$ be a Noetherian local ring with maximal ideal $\mathfrak m$. Let $M$ be a finite $R$-module, and let $\psi : M \to M$ be an $R$-module map. Assume that

  1. $\mathop{\mathrm{Ker}}(\psi )$ and $\mathop{\mathrm{Coker}}(\psi )$ have finite length, and

  2. $\dim (\text{Supp}(M)) \leq 1$.

Write $\text{Supp}(M) = \{ \mathfrak m, \mathfrak q_1, \ldots , \mathfrak q_ t\} $ and denote $f_ i \in \kappa (\mathfrak q_ i)^*$ the element such that $\det _{\kappa (\mathfrak q_ i)}(\psi _{\mathfrak q_ i}) : \det _{\kappa (\mathfrak q_ i)}(M_{\mathfrak q_ i}) \to \det _{\kappa (\mathfrak q_ i)}(M_{\mathfrak q_ i})$ is multiplication by $f_ i$. Then we have

\[ \text{length}_ R(\mathop{\mathrm{Coker}}(\psi )) - \text{length}_ R(\mathop{\mathrm{Ker}}(\psi )) = \sum \nolimits _{i = 1, \ldots , t} \text{ord}_{R/\mathfrak q_ i}(f_ i). \]

Proof. Recall that $H^0(M, 0, \psi ) = \mathop{\mathrm{Coker}}(\psi )$ and $H^1(M, 0, \psi ) = \mathop{\mathrm{Ker}}(\psi )$, see remarks above Definition 42.2.2. The lemma follows by combining Proposition 42.68.43 with Lemma 42.68.17.

Alternative proof. Reduce to the case $\text{Supp}(M) = \{ \mathfrak m, \mathfrak q\} $ as in the proof of Proposition 42.68.43. Then directly combine Lemmas 42.68.41 and 42.68.42 to prove this specific case of Proposition 42.68.43. There is much less bookkeeping in this case, and the reader is encouraged to work this out. Details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02QE. Beware of the difference between the letter 'O' and the digit '0'.