Definition 42.2.2. Let $(M, N, \varphi , \psi )$ be a $2$-periodic complex over a ring $R$ whose cohomology modules have finite length. In this case we define the multiplicity of $(M, N, \varphi , \psi )$ to be the integer
In the case of a $(2, 1)$-periodic complex $(M, \varphi , \psi )$, we denote this by $e_ R(M, \varphi , \psi )$ and we will sometimes call this the (additive) Herbrand quotient.
Comments (0)
There are also: