Lemma 25.5.2. Let $\mathcal{C}$ be a site with fibre products. Let $X$ be an object of $\mathcal{C}$. Let $K$ be a hypercovering of $X$. Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$. Then
Proof. Observe that for any object $Z = \{ U_ i \to X\} $ of $\text{SR}(\mathcal{C}, X)$ and any abelian sheaf $\mathcal{F}$ on $\mathcal{C}$ we have
Thus we see, for any simplicial object $K$ of $\text{SR}(\mathcal{C}, X)$ that we have
see Definition 25.4.1 for notation. The complex of sheaves $s(\mathbf{Z}_{F(K)}^\# )$ is quasi-isomorphic to $\mathbf{Z}_ X^\# $ if $K$ is a hypercovering, see Lemma 25.4.5. We conclude that if $\mathcal{I}$ is an injective abelian sheaf, and $K$ a hypercovering, then the complex $s(\mathcal{I}(K))$ is acyclic except possibly in degree $0$. In other words, we have
for $i > 0$. Combined with Lemma 25.5.1 the lemma is proved. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)