Lemma 25.5.1. Let $\mathcal{C}$ be a site with fibre products. Let $X$ be an object of $\mathcal{C}$. Let $K$ be a hypercovering of $X$. Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$. Then $\check{H}^0(K, \mathcal{F}) = \mathcal{F}(X)$.
Proof. We have
Write $K_0 = \{ U_ i \to X\} $. It is a covering in the site $\mathcal{C}$. As well, we have that $K_1 \to K_0 \times K_0$ is a covering in $\text{SR}(\mathcal{C}, X)$. Hence we may write $K_1 = \amalg _{i_0, i_1 \in I} \{ V_{i_0i_1j} \to X\} $ so that the morphism $K_1 \to K_0 \times K_0$ is given by coverings $\{ V_{i_0i_1j} \to U_{i_0} \times _ X U_{i_1}\} $ of the site $\mathcal{C}$. Thus we can further identify
with obvious map. The sheaf property of $\mathcal{F}$ implies that $\check{H}^0(K, \mathcal{F}) = H^0(X, \mathcal{F})$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)