Lemma 25.5.3. Let $\mathcal{C}$ be a site with fibre products. Let $X$ be an object of $\mathcal{C}$. Let $K$ be a hypercovering of $X$. Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$. There is a map
\[ s(\mathcal{F}(K)) \longrightarrow R\Gamma (X, \mathcal{F}) \]
in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces natural transformations
\[ \check{H}^ i(K, -) \longrightarrow H^ i(X, -) \]
as functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover, there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with
\[ E_2^{p, q} = \check{H}^ p(K, \underline{H}^ q(\mathcal{F})) \]
converging to $H^{p + q}(X, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$ and in the hypercovering $K$.
Proof.
We could prove this by the same method as employed in the corresponding lemma in the chapter on cohomology. Instead let us prove this by a double complex argument.
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $ in the category of abelian sheaves on $\mathcal{C}$. Consider the double complex $A^{\bullet , \bullet }$ with terms
\[ A^{p, q} = \mathcal{I}^ q(K_ p) \]
where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$ is the one coming from the differential on the complex $s(\mathcal{I}^ q(K))$ associated to the cosimplicial abelian group $\mathcal{I}^ p(K)$ and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the one coming from the differential $\mathcal{I}^ q \to \mathcal{I}^{q + 1}$. Denote $\text{Tot}(A^{\bullet , \bullet })$ the total complex associated to the double complex $A^{\bullet , \bullet }$, see Homology, Section 12.18. We will use the two spectral sequences $({}'E_ r, {}'d_ r)$ and $({}''E_ r, {}''d_ r)$ associated to this double complex, see Homology, Section 12.25.
By Lemma 25.5.2 the complexes $s(\mathcal{I}^ q(K))$ are acyclic in positive degrees and have $H^0$ equal to $\mathcal{I}^ q(X)$. Hence by Homology, Lemma 12.25.4 the natural map
\[ \mathcal{I}^\bullet (X) \longrightarrow \text{Tot}(A^{\bullet , \bullet }) \]
is a quasi-isomorphism of complexes of abelian groups. In particular we conclude that $H^ n(\text{Tot}(A^{\bullet , \bullet })) = H^ n(X, \mathcal{F})$.
The map $s(\mathcal{F}(K)) \longrightarrow R\Gamma (X, \mathcal{F})$ of the lemma is the composition of the map $s(\mathcal{F}(K)) \to \text{Tot}(A^{\bullet , \bullet })$ followed by the inverse of the displayed quasi-isomorphism above. This works because $\mathcal{I}^\bullet (X)$ is a representative of $R\Gamma (X, \mathcal{F})$.
Consider the spectral sequence $({}'E_ r, {}'d_ r)_{r \geq 0}$. By Homology, Lemma 12.25.1 we see that
\[ {}'E_2^{p, q} = H^ p_ I(H^ q_{II}(A^{\bullet , \bullet })) \]
In other words, we first take cohomology with respect to $d_2$ which gives the groups ${}'E_1^{p, q} = \underline{H}^ q(\mathcal{F})(K_ p)$. Hence it is indeed the case (by the description of the differential ${}'d_1$) that ${}'E_2^{p, q} = \check{H}^ p(K, \underline{H}^ q(\mathcal{F}))$. By the above and Homology, Lemma 12.25.3 we see that this converges to $H^ n(X, \mathcal{F})$ as desired.
We omit the proof of the statements regarding the functoriality of the above constructions in the abelian sheaf $\mathcal{F}$ and the hypercovering $K$.
$\square$
Comments (0)