Lemma 10.134.16. Let $R \to S$ be a ring map of finite type. Let $g \in S$. For any presentations $\alpha : R[x_1, \ldots , x_ n] \to S$, and $\beta : R[y_1, \ldots , y_ m] \to S_ g$ we have
\[ (I/I^2)_ g \oplus S^{\oplus m}_ g \cong J/J^2 \oplus S_ g^{\oplus n} \]
as $S_ g$-modules where $I = \mathop{\mathrm{Ker}}(\alpha )$ and $J = \mathop{\mathrm{Ker}}(\beta )$.
Proof.
Let $\beta ' : R[x_1, \ldots , x_ n, x] \to S_ g$ be the presentation of Lemma 10.134.12 constructed starting with $\alpha $. Then we know that $\mathop{N\! L}\nolimits (\alpha ) \otimes _ S S_ g$ is homotopy equivalent to $\mathop{N\! L}\nolimits (\beta ')$. We know that $\mathop{N\! L}\nolimits (\beta )$ and $\mathop{N\! L}\nolimits (\beta ')$ are homotopy equivalent by Lemma 10.134.2. We conclude that $\mathop{N\! L}\nolimits (\alpha ) \otimes _ S S_ g$ is homotopy equivalent to $\mathop{N\! L}\nolimits (\beta )$. Finally, we apply Lemma 10.134.15.
$\square$
Comments (3)
Comment #7436 by nkym on
Comment #7441 by Johan on
Comment #7598 by Stacks Project on
There are also: